首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For hydrogen to become a serious contender for replacing fossil fuels, the manufacturing thereof has to be further investigated. One such process, the membrane based Hybrid Sulfur (HyS) process, where hydrogen is produced from the electrolysis of SO2, has received considerable interest recently. Since H2SO4 is formed during SO2 electrolysis, H2SO4 stability is a prerequisite for any membrane to be used in this process. In this study, pure as well as blended polybenzimidazole (PBI), partially fluorinated poly(arylene ether) (sFS) and nonfluorinated poly(arylene ethersulfone) (sPSU) membranes were investigated in terms of their acid stability as a function of acid concentration. Membranes were characterized using weight change, TGA, GPC, SEM/EDX and IEC. While a general stability was observed at 30 and 60 wt% H2SO4, the blended sFS-PBI and sPSU-PBI showed the highest stability throughout. According to the VI curve obtained for the SO2 electrolysis, the sPSU-PBI blend membrane performed slightly better than Nafion®117.  相似文献   

2.
It has been shown that hydrogen, which can be used for energy storage, can be produced efficiently by the membrane based Hybrid Sulfur (HyS) process. During the HyS electrolysis step, SO2 and H2O are converted to H2 and H2SO4, which implies that membranes to be used for this process should have both a high proton conductivity and acid stability. In this study ionic and ionic-covalently cross-linked polybenzimidazole (PBI) blended membranes were investigated and compared with Nafion®212 in terms of their acid stability. Characterization of the membranes, which included monitoring the change in weight, swelling, SEM/EDX, TEM, TGA-MS, FTIR and IEC before and after H2SO4 treatment showed that all tested membranes were stable in 80 wt% H2SO4 at 80 °C for 120 h. Subsequent HyS electrolysis showed that the blend membranes performed better than Nafion®115 at current densities below 0.3 A/cm2, while performing similar above 0.3 A/cm2.  相似文献   

3.
Structure design is the primary strategy to acquire suitable ionomers for preparing proton exchange membranes (PEMs) with excellent performance. A series of comb-shaped sulfonated fluorinated poly(aryl ether sulfone) (SPFAES) membranes are prepared from sulfonated fluorinated poly(aryl ether sulfone) polymer (SPFAE) and sulfonated poly(aryl ether sulfone) oligomer (SPAES-Oligomer). Chemical structures of the comb-shaped membranes are verified by 1H nuclear magnetic resonance (NMR) and Fourier transform infrared (FT-IR) spectra. The comb-shaped SPFAES membranes display more continuous hydrophilic domains for ion transfer, because the abundant cations and flexible side-chains structure possess higher mobility and hydrophilicity, which show significantly improved proton conductivity, physicochemical stability, mechanical property compared to the linear SPFAE membranes. In a H2/O2 single-cell test, the SPFAES-1.77 membrane achieves a higher power density of 699.3 mW/cm2 in comparison with Nafion® 112 (618.0 mW/cm2) at 80 °C and 100% relative humidity. This work offers a promising example for the synthesis of highly branched polymers with flexible comb-shaped side chains for high-performance PEMs.  相似文献   

4.
A commercial FAA3-50 membrane was investigated as a solid polymer electrolyte in an alkaline water electrolysis. An improved chemical treatment based on alkaline KOH solution was carried out. A limited degradation of the functional groups was observed allowing to maintain a good anion conductivity approaching 55 mS cm-1 at 100 °C. Thermal stability up to 200 °C was assessed by thermal analysis.A specific membrane-electrodes assembly based on FAA3-50 anionic membrane and NiMn2O4 anode catalyst was developed and investigated in a single cell for water electrolysis at a moderate temperature (50 °C).Performance stability was assessed by a potential cycling-based durability test for 1000 h by varying the cell potential between 1 and 1.8 V for the FAA3-50 and NiMn2O4 based-MEA.According to this evaluation, both the FAA3-50 membrane and the NiMn2O4 catalyst appear sufficiently stable for electrolysis operation under mild operating temperatures.  相似文献   

5.
By choosing a triple block polymer, poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS), as the backbone and adopting a long side-chain double-cation crosslinking strategy, a series of SEBS-based anion-exchange membranes (AEMs) was successively synthesized by chloromethylation, quaternization, crosslinking, solution casting, and alkalization. The 70C16-SEBS-TMHDA membrane showed high OH conductivity (72.13 mS/cm at 80 °C) and excellent alkali stability (only 10.86% degradation in OH conductivity after soaking in 4-M NaOH for 1700 h at 80 °C). Furthermore, the SR was only 9.3% at 80 °C and the peak power density of the H2/O2 single cell was up to 189 mW/cm2 at a current density of 350 mA/cm2 at 80 °C. By introducing long flexible side chains into a polymer SEBS backbone, the structure of the hydrophilic–hydrophobic microphase separation in the membrane was constructed to improve the ionic conductivity. Additionally, network crosslinked structure improved dimensional stability and mechanical properties.  相似文献   

6.
We report an effective and facile approach to enhance the dimensional and chemical stability of sulfonated poly(ether ether ketone) (SPEEK) type proton exchange membranes through simple polymer blending for fuel cell applications, using commercial available materials. The polymeric blends with sulfonated poly(aryl ether sulfone)s (SPAES) were simply fabricated by a three-component system, which contained SPEEK (10–50 wt%, 1.83 mmol/g), and SPAES-40 (1.72 mmol/g)/SPAES-50 (2.04 mmol/g) at 1:1 in weight. The SPAES-40 was selected for mechanical and dimensional stability reinforcing, while SPAES-50 for the good polymer compatibility. The obtained SPEEK/SPAES blend membranes showed depressed water uptake, better dimensional and oxidative stability, together with higher proton conductivity beyond 70 °C than the pristine SPEEK membrane. The apparent improvements in membrane properties were associated with the homogeneous dispersion of SPEEK and both SPAES copolymers inside the membranes as well as the rearrangements of the polymeric chains. The SPEEK content should be properly controlled in the range of 10–40% (B10 to B40). In a H2/O2 fuel cell test, B30 showed a maximum power density of 700 mW/cm2, which was 1.6 times as high as that of B40 at 80 °C under 100% RH. The further cross-linking treatment produced more ductile and enduring blend membranes, indicating an appreciable prospective for fuel cell applications.  相似文献   

7.
Renewable energy storage and conversion is nowadays a major target for the scientific community. Their conversion into hydrogen is a clear and clean alternative for their storage. This work shows, for the first time, the results of the SO2 depolarized electrolysis for hydrogen production at high temperature (120–170 °C) using phosphoric acid doped polybenzimidazole (PBI) membranes. A standard and a thermally cure PBI membrane doped with phosphoric acid were used for manufacturing the MEA of two electrolyzers. The benefit of the temperature was demonstrated but an unexpected behavior occurs at voltages higher than 0.8 V when temperature increases. Moreover, the thermally cured membrane shows a superior performance as compared with the standard one. Production of sulfur by reduction of SO2 becomes an important drawback and advices not operating above 130 °C. Results show that PBI membranes doped with phosphoric acid are suitable for high temperature operation for the sulfur dioxide depolarized electrolysis. Increasing temperature is beneficial up to a certain value of potential, showing a considerable influence in the charge transfer resistance of the system.  相似文献   

8.
Metal-supported solid oxide electrolysis cells (MS-SOECs) operating at 600–700 °C are attractive for storage of intermittent renewable electricity from solar and wind energy due to their advantages of easy sealing and fast startup. This paper reports on the fabrication of MS-SOECs consisting of dense scandium stabilized zirconia (SSZ) electrolytes, Ce0.8Sm0.2O2−δ (SDC)/Ni impregnated 430L/SSZ cathodes and SmBa0.5Sr0.5Co2O5+δ (SBSCO) impregnated SSZ anodes supported on porous 430L alloys. Such cells demonstrated excellent electrolysis performance with current densities at 650 °C as high as 0.73 A⋅cm−2 at 1.3 V in 50% H2O-50% H2 and 0.95 A⋅cm−2 at 1.5 V in 90% CO2-10% CO. Electrochemical impedance measurements indicated that the cell performance was largely limited by the ohmic losses for steam electrolysis and by the cathodic reduction reactions for CO2 electrolysis, especially at reduced temperatures. Pronounced degradation was observed for both steam and CO2 electrolysis over the preliminary 90-h stability measurements at 600 °C. SEM examination and EDS mapping of measured cells showed significant aggregation and coarsening of impregnated Ni particles, resulting in smaller activities for H2O and CO2 reduction reactions. As evidenced by the almost unaltered ohmic resistances over the measurement durations, the 430L stainless steel substrates demonstrate excellent resistances against corrosions from H2O and CO2 and thus show great promise for applications in reduced-temperature MS-SOECs.  相似文献   

9.
Boosted by the high temperatures in which vinasse is generated (90 °C–100 °C), this study evaluated the effect of an extreme thermophilic condition (70 °C) on sugarcane vinasse Dark Fermentation (DF) in an Anaerobic Structured Bed Reactor (ASTBR). Four hydraulic retention times (HRT) (19, 15, 12 and 8 h) were evaluated. Higher HRT resulted in a greater H2 production rate (690 mLH2.d−1.L−1), higher yields (1.8 molH2.molGlucose−1) and greater stability. The extreme temperature inhibits microorganisms' extracellular polymer production, thus leading to a disperse growth, preventing excess biomass accumulation, which was previously reported as the main drawback in H2 production at lower temperatures. The ASTBR higher void index is also responsible for lower biomass/solids retention. The H2 production main route was through the lactic/acetic acid pathway, which is highly reliant on the pH of fermentation broth. The main genus involved in H2 production at 70 °C were Clostridium, Pectinatus, Megasphaera and Lactobacillus.  相似文献   

10.
Efficient and sustained hydrogen production via acidic water splitting is of great importance in the electrolyzer industry. Here, we have designed and synthesized a self-assembled, freestanding, three dimensional (3D) reduced graphene-non-noble tungsten oxide (SA-GWO) electrode with high comprehensive acidic electrolysis performance. Adsorption isotherm suggested the formation of mesoporous structural design within a 3D self-assembled SA-GWO architecture electrode. Bi-functional (HER and OER) activity has been displayed by SA-GWO electrodes at the combined full potential of 1.9 V and attains the standard 10 mA/cm2 (1 M H2SO4, 28 °C). Remarkably, it exhibits OER activity in the acidic medium, which is so far very limited. The tafel slope and the exchange current density for the HER process are observed to be 117 mV/decade and 1.73 × 10?3 mA/cm2, respectively, at 28 °C. Importantly, the production rate of hydrogen is found to increase with increasing temperature. HER is highly dominated by the Volmer route. Gas liberated at the respective electrode has been tested via gas chromatography (GC) analysis. SA-GWO supports the faradaic efficiency of 73 and 52% for HER and OER, respectively. Tafel slope for OER appeared to be very high owing to its complex mechanistic pathway. Disintegration of 3D monoclinic WO3 and the formation of 2D nanochannels like nanostructure have been distinctly observed in SEM micro images, when the electrode is subjected to cathodic HER reaction (?0.5 V, 1 M H2SO4). Most importantly, the WO3 polymorph typically responsible for the distinct mechanism of HER and OER action in 1 M H2SO4 has been identified and proven. Moreover, the 3D SA-GWO electrode as HER possesses great endurance and incomparable stability in acidic media.  相似文献   

11.
Bovine ruminal fluid (BRF) bioaugmented with Clostridium acetobutylicum (Clac) was assessed for hydrolyzing cellulose and produce biohydrogen (BioH2) simultaneously from pretreated corncob in a single step, without the use of external hydrolytic biocatalysts. The corncob was pretreated using three thermochemical methods: H2SO4 2%, 160 °C; NaOH 2%, 140 °C; NaOCl 2%, 140 °C; autohydrolysis: H2O, 190 °C. Subsequently, BioH2 production was carried out using the pretreated material with the highest digestibility applying a Taguchi experimental array to identify the optimal operating conditions. The results showed a higher glucose released from pretreated corncob with H2SO4 (134.7 g/L) compared to pretreated materials by autohydrolysis, NaOH and NaOCl (123 g/L, 89.8 g/L and 52.9 g/L, respectively). The mixed culture was able to hydrolyze the pretreated corncob and produce 575 mL of H2 (at 35 °C, pH 5.5, 1:2 ratio of BRF:Clac and 5% of solids loading) equivalent to 132 L H2/Kg of biomass.  相似文献   

12.
High temperature co-electrolysis of H2O/CO2 allows for clean production of syngas using renewable energy, and the novel fuel-assisted electrolysis can effectively reduce consumption of electricity. Here, we report on symmetric cells YSZ-LSCrF | YSZ | YSZ-LSCrF, impregnated with Ni-SDC catalysts, for CH4-assisted co-electrolysis of H2O/CO2. The required voltages to achieve an electrolysis current density of ?400 mA·cm?2 at 850 °C are 1.0 V for the conventional co-electrolysis and 0.3 V for the CH4-assisted co-electrolysis, indicative of a 70% reduction in the electricity consumption. For an inlet of H2O/CO2 (50/50 vol), syngas with a H2:CO ratio of ≈2 can be always produced from the cathode under different current densities. In contrast, the anode effluent strongly depends upon the electrolysis current density and the operating temperature, with syngas favorably produced under moderate current densities at higher temperatures. It is demonstrated that syngas with a H2:CO ratio of ≈2 can be produced from the anode at a formation rate of 6.5·mL min?1·cm?2 when operated at 850 °C with an electrolysis current density of ?450 mA·cm?2.  相似文献   

13.
Direct CO2 electrolysis has been explored as a means to store renewable energy and produce renewable fuels. La chromate-based perovskite oxides have attracted great attention as fuel electrode materials for solid oxide electrolyzer cells. However, the electrochemical catalytic activity of such oxides is relatively low, and their stability has not been confirmed. In this study, Pr is doped into La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) and the applicability of the resulting fuel electrode to direct CO2 electrolysis is investigated. The polarization resistance of the resulting electrode at 800 °C is decreased by 25%. Distribution function of relaxation times analysis indicates that the observed improvements may be attributed to increased oxygen ion conductivity. A full cell of Pr-doped LSCM-gadolinium-doped ceria (GDC)|scandia-stabilized zirconia|La0.6Sr0.4Co0.2Fe0.8O3-δ-GDC achieves an electrolysis current of 0.5 A cm−2 at 1.36 V and a Faradaic efficiency close to 100%. Short-term (210 h) stability testing of the cell under an electrolysis current of 0.5 A cm−2 at 800 °C with pure CO2 as the feedstock reveals a decrease in applied voltage at a rate of 7 mV kh−1, thereby indicating excellent stability. Thus, given its satisfactory performance and stability, the Pr-doped LSCM electrode may be considered a promising candidate material for direct CO2 electrolysis.  相似文献   

14.
To increase proton conductivity of chitosan (CS) based polymer electrolyte membranes, a novel nanofiller-solid superacide SO42--TiO2 (STi) coated carbon nanotubes (STi@CNTs) are introduced into CS matrix to fabricate membranes for polymer electrolyte membrane fuel cells (PEMFCs). Owing to the STi coating, the dispersion ability of CNTs and interfacial bonding are obviously improved, hence, CNTs can more fully play their reinforcing role, which makes the CS/STi@CNTs composite membranes exhibit better mechanical properties than that of pure CS membrane. More importantly, STi possesses excellent proton transport ability and may create facile proton transport channels in the membranes with the help of high aspect ratio of CNTs. Particularly, the CS/STi@CNTs-1 membrane (1 wt% STi@CNTs loading) obtains the highest proton conductivity of 4.2 × 10−2 S cm–1 at 80 °C, enhancing by 80% when compared with that of pure CS membrane. In addition, the STi@CNTs also confer the composite membranes low methanol crossover and outstanding cell performance. The maximum power density of the CS/STi@CNTs-1 membrane is 60.7 mW cm−2 (5 M methanol concentration, 70 °C), while pure CS membrane produces the peak power density of only 39.8 mW cm−2.  相似文献   

15.
The chemical stability, sulfur dioxide transport, ionic conductivity, and electrolyzer performance have been measured for several commercially available and experimental proton exchange membranes (PEMs) for use in a sulfur dioxide depolarized electrolyzer (SDE). The SDEs function is to produce hydrogen by using the Hybrid Sulfur (HyS) Process, a sulfur-based electrochemical/thermochemical hybrid cycle. Membrane stability was evaluated using a screening process where each candidate PEM was heated at 80 °C in 60 wt% H2SO4 for 24 h. Following acid exposure, chemical stability for each membrane was evaluated by FTIR using the ATR sampling technique. Membrane SO2 transport was evaluated using a two-chamber permeation cell. SO2 was introduced into one chamber whereupon SO2 transported across the membrane into the other chamber and oxidized to H2SO4 at an anode positioned immediately adjacent to the membrane. The resulting current was used to determine the SO2 flux and SO2 transport. Additionally, membrane electrode assemblies (MEAs) were prepared from candidate membranes to evaluate ionic conductivity and selectivity (ionic conductivity vs. SO2 transport) which can serve as a tool for selecting membranes. MEAs were also performance tested in a HyS electrolyzer measuring current density vs. a constant cell voltage (1 V, 80 °C in SO2 saturated 30 wt% H2SO4). Finally, candidate membranes were evaluated considering all measured parameters including SO2 flux, SO2 transport, ionic conductivity, HyS electrolyzer performance, and membrane stability. Candidate membranes included both PFSA and non-PFSA polymers and polymer blends of which the non-PFSA polymers, BPVE-6F and PBI, showed the best selectivity.  相似文献   

16.
The present work investigates the effect of acid functionalization of multiwalled carbon nanotubes (MWCNTs) on the physisorption based mechanism of hydrogen storage at room temperature. For this purpose, a suite of functionalized CNT samples is synthesized and subjected to a comprehensive range of material characterization techniques and hydrogen storage measurements. Nitric acid (HNO3) and the mixture of sulphuric acid and nitric acid (H2SO4:HNO3) are used for the synthesis at oxidation temperatures of 80 °C and 100 °C. Electron microscopy and X-ray photoelectron spectroscopy results reveal that acid functionalization causes major alternation in the physicochemical properties of the CNTs due to the varied concentration of oxygen functional groups. Particularly, the H2SO4:HNO3 functionalized sample at 100 °C is found to have the highest interlayer spacing, oxygen to carbon ratio (26.09 at. %), defect content, and specific surface area (215.3 m2/g). These features collectively contribute to substantially improved hydrogen storage properties, including a ~150% increase in the hydrogen storage capacity at 298 K and 50 bar. Furthermore, kinetic analysis shows that the desorption follows a multiple diffusion process which is sensitive to the oxygen functional groups and structural defects, hence reducing the rate of desorption; whereas the adsorption is controlled by a more rapid, three-dimensional diffusion process.  相似文献   

17.
High-performance anion exchange membranes (AEMs) are in need for practical application of AEM fuel cells. Novel branched poly(ether ether ketone) (BPEEK) based AEMs were prepared by the copolymerization of phloroglucinol, methylhydroquinone and 4,4′-difluorobenzophenone and following functionalization. The effects of the branched polymer structures and functional groups on the membrane's properties were investigated. The swelling ratios of all the membranes were kept below 15% at room temperature and had good dimensional stability at elevated temperatures. The branching degree has almost no effect on the dimensional change, but plays a great role in tuning the nanophase separation structure. The cyclic ammonium functionalized membrane showed a lower conductivity but a much better stability than imidazolium one. The BPEEK-3-Pip-53 membrane with the branching degree of 3% and piperidine functionalization degree of 53% showed the best performances. The ionic conductivity was 43 mS cm−1 at 60 °C. The ionic conductivity in 1 M KOH at 60 °C after 336 h was 75% of its initial value (25% loss of conductivity), and the IEC was 83% of its initial value (17% loss of IEC), suggesting good alkaline stability. The peak energy density (60 °C) of the single H2/O2 fuel cell with BPEEK-3-Pip-53 membrane reached 133 mW cm−2 at 260 mA cm−2.  相似文献   

18.
《Journal of power sources》2006,159(2):817-823
The performance of a poly(2,5-benzimidazole) (ABPBI) membrane based high temperature PEM fuel cell in presence of carbon monoxide, at various temperatures is reported here. The ABPBI was synthesized by polymerization of 3,4-diaminobenzoic acid in a polymerization medium containing methanesulfonic acid (CH3SO3H) and phosphorous pentoxide (P2O5). The ABPBI membranes were characterized by fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). A maximum conductivity of 0.026 S cm−1 at 180 °C was obtained for the membrane doped with 1.2 molecules of phosphoric acid (H3PO4) per polymer repeat unit. Fuel cell performance was evaluated using dry hydrogen/oxygen gases and was comparable with that reported in the literature. Performance of a single cell at different temperatures was studied with 0.48 and 1.0 vol.% of CO in the hydrogen fuel. The studies lead to the conclusion that CO poisoning is not a serious problem above 170 °C. Performance of the fuel cell operating at 210 °C is not at all affected by 1.0 vol.% of CO in the hydrogen feed.  相似文献   

19.
Recently, the preparation of hydroxide exchange membranes (HEMs) without ether bonds have attracted much attention because of their high chemical stability. Hence, ether-bond free, highly durable, and conductive poly(arylene piperidine)s (PAPips) tethered with heterocyclic ammonium via hexyl spacer chains were prepared successfully for HEMs via a facile synthetic procedure. The effect of the cationic groups (quaternary ammonium, piperidinium, and morpholinium) on the properties of the corresponding PAPip-based HEMs, including the morphology, hydroxide conductivity, and alkaline and chemical stability were systematically investigated. The as-designed PAPip-based membranes exhibited excellent overall performance. The membranes attached with piperidinium (IEC = 1.64 mmol g−1) exhibited a hydroxide conductivity of 0.082 S cm−1 at 80 °C and exhibited significant alkaline stability which maintained 80.1% of its conductivity after immersion in 1 M NaOH at 80 °C for 1500 h. The as-prepared membrane also presented a peak power density of 76 mW cm−2 at 80 °C in a H2/O2 HEMFC. The resulting HEMs also showed excellent mechanical properties, thermal stability, and well-defined phase separation.  相似文献   

20.
Water electrolysis is the most promising method for efficient production of high purity hydrogen (and oxygen), while the required power input for the electrolysis process can be provided by renewable sources (e.g. solar or wind). The thus produced hydrogen can be used either directly as a fuel or as a reducing agent in chemical processes, such as in Fischer–Tropsch synthesis. Water splitting can be realized both at low temperatures (typically below 100 °C) and at high temperatures (steam water electrolysis at 500–1000 °C), while different ionic agents can be electrochemically transferred during the electrolysis process (OH, H+, O2−). Singular requirements apply in each of the electrolysis technologies (alkaline, polymer electrolyte membrane and solid oxide electrolysis) for ensuring high electrocatalytic activity and long-term stability. The aim of the present article is to provide a brief overview on the effect of the nature and structure of the catalyst–electrode materials on the electrolyzer's performance. Past findings and recent progress in the development of efficient anode and cathode materials appropriate for large-scale water electrolysis are presented. The current trends, limitations and perspectives for future developments are summarized for the diverse electrolysis technologies of water splitting, while the case of CO2/H2O co-electrolysis (for synthesis gas production) is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号