共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Journal of Hydrogen Energy》2021,46(63):31963-31983
This paper is a critical review of selected real-world energy storage systems based on hydrogen, ranging from lab-scale systems to full-scale systems in continuous operation. 15 projects are presented with a critical overview of their concept and performance. A review of research related to power electronics, control systems and energy management strategies has been added to integrate the findings with outlooks usually described in separate literature. Results show that while hydrogen energy storage systems are technically feasible, they still require large cost reductions to become commercially attractive. A challenge that affects the cost per unit of energy is the low energy efficiency of some of the system components in real-world operating conditions. Due to losses in the conversion and storage processes, hydrogen energy storage systems lose anywhere between 60 and 85% of the incoming electricity with current technology. However, there are currently very few alternatives for long-term storage of electricity in power systems so the interest in hydrogen for this application remains high from both industry and academia. Additionally, it is expected that the share of intermittent renewable energy in power systems will increase in the coming decades. This could lead to technology development and cost reductions within hydrogen technology if this technology is needed to store excess renewable energy. Results from the reviewed projects indicate that the best solution from a technical viewpoint consists in hybrid systems where hydrogen is combined with short-term energy storage technologies like batteries and supercapacitors. In these hybrid systems the advantages with each storage technology can be fully exploited to maximize efficiency if the system is specifically tailored to the given situation. The disadvantage is that this will obviously increase the complexity and total cost of the energy system. Therefore, control systems and energy management strategies are important factors to achieve optimal results, both in terms of efficiency and cost. By considering the reviewed projects and evaluating operation modes and control systems, new hybrid energy systems could be tailored to fit each situation and to reduce energy losses. 相似文献
2.
The residential sector accounts for about a third of the total world energy consumption. Energy efficiency, Renewable Energy Sources and Hydrogen can play an important role in reducing the consumptions and the emissions and improving the energy security if integrated (Efficiency, Res, Hydrogen) systems are developed and experimented. The paper analyzes a real residential 100 square meters house, where energy efficiency measures and RES technologies have been applied, sizing a hydrogen system (electrolyzer, metal hydrides and fuel cell) for power backup, taking into consideration its dynamic behavior, experimentally determined. The technologies used are already available in the market and, except hydrogen technologies, sufficiently mature. Through energy efficiency technologies (insulation, absorbers, etc), the maximum electrical and thermal power needed decreases from 4.4 kWe to 1.7 kWe (annual consumption from 5000 kWh to 1200 kWh) and from 5.2 kWt to 1.6 kWt (annual consumption from 14,600 kWh to 4500 kWh) respectively. With these reduced values it has been possible to supply the consumptions entirely by small photovoltaic and solar thermal plants (less than 10 m2 each). The hydrogen backup even if remains the most expensive (versus traditional batteries and gasoline generator), satisfying all the electric needs for one day, increases the security and allows net metering. Moreover the low-pressure hydrogen storage system through metal hydrides guarantees system safety too. Finally the system modularity can also satisfy higher energy production. 相似文献
3.
《International Journal of Hydrogen Energy》2023,48(74):28803-28823
Rising concerns about the dependence of modern energy systems on fossil fuels have raised the requirement for green alternate fuels to pave the roadmap for a sustainable energy future with a carbon-free economy. Massive expectations of hydrogen as an enabler for decarbonization of the energy sector are limited by the lack of required infrastructure, whose implementation is affected by the issues related to the storage and distribution of hydrogen energy. Ammonia is an effective hydrogen energy carrier with a well-established and mature infrastructure for long-distance transportation and distribution. The possibility for green ammonia production from renewable energy sources has made it a suitable green alternate fuel for the decarbonization of the automotive and power generation sectors. In this work, engine characteristics for ammonia combustion in spark ignition engines have been reported with a detailed note on engines fuelled with pure ammonia as well as blends of ammonia with gasoline, hydrogen, and methane. Higher auto-ignition temperature, low flammability, and lower flame speed of ammonia have a detrimental effect on engine characteristics, and it could be addressed either by incorporating engine modifications or by enhancing the fuel quality. Literature shows that the increase in compression ratio from 9.4:1 to 11.5:1 improved the maximum power by 59% and the addition of 10% hydrogen in supercharged conditions improved the indicated efficiency by 37%. Challenges and strategies for the utilization of ammonia as combustible fuel in engines are discussed by considering the need for technical advancements as well as social acceptance. Energy efficiency for green ammonia production is also discussed with a due note on techniques for direct synthesis of ammonia from air and water. 相似文献
4.
欧盟在发展低碳经济的背景下通过制定具体且严格的温室气体减排和可再生能源发展目标,大力推广各种低碳能源技术的应用,积极倡导低碳化的能源转型。欧盟能源转型的理念和行动已成为各国制定能源政策的重要参考,并引领了当前全球能源转型的主流发展方向。本文在对欧盟各国能源转型战略进行梳理的基础上,归纳了各国能源转型的核心及关键措施,分析了欧盟低碳能源发展迅速的主要原因,并总结了欧盟能源转型对我国推进能源生产和消费革命的启示。 相似文献
5.
《International Journal of Hydrogen Energy》2023,48(12):4551-4571
The article provides a review of the current hydrogen production and the prospects for the development of the production of “green” hydrogen using renewable energy sources in various countries of the world that are leaders in this field. The potential of hydrogen energy in such countries and regions as Australia, the European Union, India, Canada, China, the Russian Federation, United States of America, South Korea, the Republic of South Africa, Japan and the northern countries of Africa is considered. These countries have significant potential for the production of hydrogen and “green” hydrogen, in particular through mining of fossil fuels and the use of renewable energy sources. The quantitative indicators of the production of “green” hydrogen in the future and the direction of its export are considered; the most developed hydrogen technologies in these countries are presented. The production of “green” hydrogen in most countries is the way to transition from the consumption of fossil fuels to the clean energy of the future, which will significantly improve the environmental situation, reduce greenhouse gas emissions and improve the energy independence of the regions. 相似文献
6.
《International Journal of Hydrogen Energy》2023,48(78):30247-30262
A considerable amount of non-dispatchable photovoltaic and wind power have always been planned in smart cities, however, the problem of massive energy storage has not yet been solved which limits the use of green energy on larger scale. At present the only battery energy storage is available, and it is effective only for storing modest quantities of energy for short periods of time. The other storage technology options are not often commercially available items; rather, they are just good concepts that need to be tested for viability. Currently, the only alternative options for turning an urban development into one that exclusively uses green energy is to use that energy to generate hydrogen through electrolyzers, then use this fuel to generate the required electricity in order to stabilize the grid. Even more appealing is the idea of using wind and photovoltaic energy to transform smart communities into a centre for producing hydrogen in addition to a city that solely uses renewable energy. The most likely solution, absent an urgent debate inside the science establishment, will be to import electricity from the burning of hydrocarbons while continuing to pay carbon offsets, which is incompatible with the goal of using only renewables. The smart city has not officially accepted this issue, just like the science establishment. 相似文献
7.
The unevenness of solar photovoltaic energy output poses a number of issues that reduce its capability to be considered a reliable substitute for fossil fuels. For instance, solar photovoltaic plants convert and inject energy in the grid during the daytime, but fail to do so during bad weather conditions or at night. Variable weather conditions also render a reliable energy injection planning impossible, causing the photovoltaic power plant output to be most often unpredictable. Furthermore, all the energy converted and immediately injected in the grid poses the risk of creating imbalances in the electric energy distribution lines. A nation-wide energy system characterized by a large penetration of photovoltaic and wind energy sources can therefore be extremely difficult to manage and cannot be considered dependable. The core issue is how to improve the reliability of electricity production from such renewable energy sources. 相似文献
8.
《International Journal of Hydrogen Energy》2020,45(39):20164-20175
Hydrogen has an important role as a smart solution for Smart Grid, as it can play as an energy vector, a storage medium, and a clean fuel cell. The integration of Hydrogen and Smart Grid can minimize the impact on the environment while maximizing sustainability, which indicates that we are developing toward a hydrogen society. There have been already many studies on different aspects of this topic. For a better understanding of the related work, this paper proposed a comprehensive overview of the related work on the integration of Hydrogen and Smart Grid. Related literature is organized and analyzed from four categories, including Hydrogen energy in smart grids, Hydrogen fuel cell electric vehicles, Hydrogen economy in smart grids, and Models for energy system in smart grids. And each subject has been introduced more carefully. What's more, for a clear understanding for readers, we provide overall scenario views for the organization of the related work. 相似文献
9.
《International Journal of Hydrogen Energy》2021,46(57):29376-29390
Variable renewable energy sources (VRES) will be the cornerstones of future energy supply systems. Nevertheless, their inherent intermittency remains an obstacle to their widespread deployment. Renewably-produced or ‘green’ hydrogen has been suggested as an energy carrier that could account for this in a sustainable manner. In this study, a fully VRES-based European energy system in the year 2050 is designed using an iterative minimal cost-optimization approach that ensures robust supply security across 38 weather-year scenarios (1980–2017). The impact of different power generation locations is factored in by defining exclusive VRES groups within each optimization region. From this, it can be seen that higher numbers of groups in each region offer cheaper electricity generation locations to the optimizer and thus decrease the system's total annual costs. Furthermore, the robust system design and impact of inter-annual variability is identified by iteratively combining the installed capacities of different system designs derived through the application of the 38 historical weather years. The system design outlined here has significantly lower capacities in comparison to the maximum regional capacities obtained in the first round of optimization. 相似文献
10.
Yunus Emre Yuksel Murat Ozturk Ibrahim Dincer 《International Journal of Hydrogen Energy》2021,46(30):16344-16359
Increasing environmental concerns and decreasing fossil fuel sources compel engineers and scientists to find resilient, clean, and inexpensive alternative energy options Recently, the usage of renewable power resources has risen, while the efficiency improvement studies have continued. To improve the efficiency of the plants, it is of great significance to recover and use the waste heat to generate other useful products. In this paper, a novel integrated energy plant utilizing a geothermal resource to produce hydrogen, ammonia, power, fresh water, hot water, heated air for drying, heating, and cooling is designed. Hydrogen, as an energy carrier, has become an attractive choice for energy systems in recent years due to its features like high energy content, clean, bountiful supply, non-toxic and high efficiency. Furthermore in this study, hydrogen beside electricity is selected to produce and stored in a hydrogen storage tank, and some amount of hydrogen is mixed with nitrogen to compound ammonia. In order to determine the irreversibilities occurring within the system and plant performance, energy and exergy analyses are then performed accordingly. In the design of the plant, each sub-system is integrated in a sensible manner, and the streams connecting sub-systems are enumerated. Then thermodynamic balance equations, in terms of mass, energy, entropy and exergy, are introduced for each unit of the plant. Based on the system inputs and outputs, the energy and exergy efficiencies of the entire integrated plant is found to be 58.68% and 54.73% with the base parameters. The second part of the analysis contains some parametric studies to reveal how some system parameters, which are the reference temperature, geothermal resource temperature and mass flow rate, and separator inlet pressure in the geothermal cycle, affect both energy and exergy efficiencies and hence the useful outputs. 相似文献
11.
《International Journal of Hydrogen Energy》2021,46(71):35365-35384
With the rapidly declining cost of renewable energy, efficient ways are needed for its transportation between different regions. Hydrogen is becoming a major energy vector, with the key challenges of its storage and transportation commonly overcome by using ammonia for chemical storage of hydrogen energy. Ammonia, which is more energy dense than hydrogen and easier to transport, is a carbon-free alternative fuel that can be used in a variety of ways to generate power. Owing to their robustness and efficiency, solid-oxide fuel cells (SOFC) stand out as one of the most promising technologies that convert ammonia to electricity. Unlike other fuel cells, such as polymer electrolyte membranes, SOFCs do not require the fuel to be cleaned by energy-intensive external cracking and extensive cleaning; their high operating temperature provides the flexibility to crack the ammonia inside the anode or to use it directly. Here, we discuss experimental and numerical studies of ammonia SOFCs and critically review the status and opportunities for ammonia-fuelled SOFC technology. In the first section, we briefly outline the potential cathode and electrolyte materials for SOFCs. Only the anode component poses additional challenges with ammonia over the well-established hydrogen-fuelled SOFC technology, and this topic has been addressed in detail. Anode catalysts for ammonia decomposition, parameters affecting ammonia decomposition and anode catalyst degradation are also discussed. In the second section, we review the modelling studies for ammonia SOFCs. Finally, we run through the major commercial initiatives and demonstrations in green ammonia production and ammonia SOFCs. 相似文献
12.
《International Journal of Hydrogen Energy》2023,48(40):15026-15036
A combined thermophilic anaerobic bioreactor of food waste and bioelectrodialysis system was used to recover volatile fatty acids and ammonia as renewable materials and also to remove the inhibitory effect of biohydrogen production byproducts. Different configurations of bioelectrodialysis system under various amounts of inlet food waste and external electrical currents were examined were investigated to find out the best conditions for system performance. When the two anion exchange membranes (AEM) were installed on the anode and cathode sides of separation chamber, 12 mL min-1 of mixed liquid was circulated between fermenter and separation chamber, while the external energy of 2.7 V and 0.2 M NaCl as electrolyte were used in the electrodialysis chambers. As long as the food waste with 70000 mg COD L-1 was used in the fermenter, the concertation of organic acids in the recovery chamber was the highest, 507.3 mg L-1 after 24th h. As a result, 0.63 L L-1 biohydrogen and 50 mL cathodic hydrogen were produced. When a cation exchange membrane was embedded on the cathode side of the separation chamber, the ammonia concertation in the recovery chamber was the highest, 518 mg L-1, at 36th h. At the same time, the chemical oxygen demand of the anode solution was decreased by about 3600 mg L-1. This sustainable and bioelectrical system can recover organic acids and ammonia, cathodic hydrogen production, while simultaneously increase biohydrogen production and efficient even when substrate concentration was higher. 相似文献
13.
《International Journal of Hydrogen Energy》2021,46(57):28870-28886
This paper presents techno-economic modelling results of a nationwide hydrogen fuel supply chain (HFSC) that includes renewable hydrogen production, transportation, and dispensing systems for fuel cell electric buses (FCEBs) in Ireland. Hydrogen is generated by electrolysers located at each existing Irish wind farm using curtailed or available wind electricity. Additional electricity is supplied by on-site photovoltaic (PV) arrays and stored using lithium-ion batteries. At each wind farm, sizing of the electrolyser, PV array and battery is optimised system design to obtain the minimum levelised cost of hydrogen (LCOH). Results show the average electrolyser capacity factor is 64% after the integration of wind farm-based electrolysers with PV arrays and batteries. A location-allocation algorithm in a geographic information system (GIS) environment optimises the distributed hydrogen supply chain from each wind farm to a hypothetical hydrogen refuelling station in the nearest city. Results show that hydrogen produced, transported, and dispensed using this system can meet the entire current bus fuel demand for all the studied cities, at a potential LCOH of 5–10 €/kg by using available wind electricity. At this LCOH, the future operational cost of FCEBs in Belfast, Cork and Dublin can be competitive with public buses fuelled by diesel, especially under carbon taxes more reflective of the environmental impact of fossil fuels. 相似文献
14.
《Energy Policy》2014
The article examines the influence of renewable energy companies on the decision-making process related to the German energy transition. It identifies clusters of different lobbying activities and styles through in depth interviews with 20 stakeholders from policy-making and business. The research used Repertory Grid Technique in combination with HOMALS multivariate analysis. Its main findings are: First, although the big four electric utilities operating on the German energy market still possess wide influence, companies of renewable energy have developed from a niche into important players of the energy regime. Second, lobbies by the renewable energy sector are mainly aimed at the legislative framework, particularly on the Renewable Energy Sources Act and the feed-in-system. Third, interviewees identified 36 different lobby activities; the most effective ones are: ‘Regular and personal maintenance of contact to politicians’, ‘Lobbying within an association’, ‘Knowledge development with correct information’ and ‘Top-down contacting of most powerful politicians’. Fourth, the statistical analysis reveals clear distinctions between companies with regards to their lobby strategies which are evaluated differently by stakeholders. Finally, the article concludes that companies have a strong influence on political-decision making and – together with governmental actors – form a ‘policy network’ that strongly shapes the German energy transition. 相似文献
15.
《International Journal of Hydrogen Energy》2019,44(23):11371-11384
The goal that the international community has set itself is to reduce greenhouse gas (GHG) emissions in the short/medium-term, especially in Europe that committed itself to reducing GHG emissions to 80–95% below 1990 levels by 2050. Renewable energies play a fundamental role in achieving this objective. In this context, the policies of the main industrialized countries of the world are being oriented towards increasing the shares of electricity produced from renewable energy sources (RES).In recent years, the production of renewable energy has increased considerably, but given the availability of these sources, there is a mismatch between production and demand. This raises some issues as balancing the electricity grid and, in particular, the use of surplus energy, as well as the need to strengthen the electricity network.Among the various new solutions that are being evaluated, there are: the accumulation in batteries, the use of compressed air energy storage (CAES) and the production of hydrogen that appears to be the most suitable to associate with the water storage (pumped hydro). Concerning hydrogen, a recent study highlights that the efficiencies of hydrogen storage technologies are lower compared to advanced lead acid batteries on a DC-to-DC basis, but “in contrast […] the cost of hydrogen storage is competitive with batteries and could be competitive with CAES and pumped hydro in locations that are not favourable for these technologies” (Moliner et al., 2016) [1].This shows that, once the optimal efficiency rate is reached, the technologies concerning the production of hydrogen from renewable sources will be a viable and competitive solution. But, what will be the impact on the energy and fuel markets? The production of hydrogen through electrolysis will certainly have an important economic impact, especially in the transport sector, leading to the creation of a new market and a new supply chain that will change the physiognomy of the entire energy market. 相似文献
16.
Meng Ni Michael K.H. LeungK. Sumathy Dennis Y.C. Leung 《International Journal of Hydrogen Energy》2006
Hong Kong is highly vulnerable to energy and economic security due to the heavy dependence on imported fossil fuels. The combustion of fossil fuels also causes serious environmental pollution. Therefore, it is important to explore the opportunities for clean renewable energy for long-term energy supply. Hong Kong has the potential to develop clean renewable hydrogen energy to improve the environmental performance. This paper reviews the recent development of hydrogen production technologies, followed by an overview of the renewable energy sources and a discussion about potential applications for renewable hydrogen production in Hong Kong. The results show that although renewable energy resources cannot entirely satisfy the energy demand in Hong Kong, solar energy, wind power, and biomass are available renewable sources for significant hydrogen production. A system consisting of wind turbines and photovoltaic (PV) panels coupled with electrolyzers is a promising design to produce hydrogen. Biomass, especially organic waste, offers an economical, environmental-friendly way for renewable hydrogen production. The achievable hydrogen energy output would be as much as 40% of the total energy consumption in transportation. 相似文献
17.
Pablo García Juan P. Torreglosa Luis M. Fernández Francisco Jurado 《International Journal of Hydrogen Energy》2013
This paper presents a novel hourly energy management system (EMS) for a stand-alone hybrid renewable energy system (HRES). The HRES is composed of a wind turbine (WT) and photovoltaic (PV) solar panels as primary energy sources, and two energy storage systems (ESS), which are a hydrogen subsystem and a battery. The WT and PV panels are made to work at maximum power point, whereas the battery and the hydrogen subsystem, which is composed of fuel cell (FC), electrolyzer and hydrogen storage tank, act as support and storage system. The EMS uses a fuzzy logic control to satisfy the energy demanded by the load and maintain the state-of-charge (SOC) of the battery and the hydrogen tank level between certain target margins, while trying to optimize the utilization cost and lifetime of the ESS. Commercial available components and an expected life of the HRES of 25 years were considered in this study. Simulation results show that the proposed control meets the objectives established for the EMS of the HRES, and achieves a total cost saving of 13% over other simpler EMS based on control states presented in this paper. 相似文献
18.
《International Journal of Hydrogen Energy》2019,44(19):9577-9593
Power-to-gas (P2G) is a promising enabling technology for more cross-sector integration but its high cost has so far been a key barrier to implementation. Electricity supply is the greatest contributor to the levelised cost therefore it is important to understand which technologies and strategies can minimise the cost and accelerate the deployment. In this study, a method is devised to evaluate the cost and value of combined systems comprising P2G and renewable energy technologies such as solar photovoltaics, wind and hydro as well as comparing to traditional electricity supply via the wholesale market. The proposed models are based on a temporal resolution of 1 h and include partial operation and ageing throughout the system's lifespan. Our analysis covers both distributed and centralised P2G systems producing hydrogen or methane as well as various value-adding services across different geographies. It is found that the capacity factor of a P2G system drives the economic case and therefore the electricity supply from hydropower plants is economically more attractive than electricity from wind and solar photovoltaic plants in this order. Under today's market conditions, it is highly advisable to combine local renewable supply with wholesale-based supply but interestingly, a 20% capital cost reduction in wind technology or a P2G system efficiency of 80% are break-even points for P2G systems producing hydrogen and connected to wind plants. 相似文献
19.
L. Barelli G. Bidini G. Cinti A. Ottaviano 《International Journal of Hydrogen Energy》2017,42(41):26037-26047
Reversible Solid Oxide Fuel Cell (RSOFC) can perform both power production and electricity storage with high efficiency and reduced cost using the same device for both functions. Within the frame of a small scale application and distributed generation, RSOFC systems operate connected to the grid switching from electrolysis to fuel cell and vice versa depending on load and grid peculiarities. The study aims to investigate the behavior of RSOFC in the two operation modes and in the transition phase. The analysis moves from the thermal equilibrium and electrical performances data gathered during the test of a six cells SOFC short stack. In particular, the effect of gas composition was deeply investigated. A mapping of performances was realized through polarization curves. Dilution of reactants, both in SOFC and SOE brings to reduction in performances while different compositions during SOE-SOFC transition did not give any significant effect to stack voltages. The dynamic model was derived from experimental results; thermal and electrical transient response to current variation was determined under several operating conditions and related transfer functions were identified characterizing the device dynamic behavior. 相似文献
20.
《International Journal of Hydrogen Energy》2022,47(41):17859-17870
The Philippines is exploring different alternative sources of energy to make the country less dependent on imported fossil fuels and to reduce significantly the country's CO2 emissions. Given the abundance of renewable energy potential in the country, green hydrogen from renewables is a promising fuel because it can be utilized as an energy carrier and can provide a source of clean and sustainable energy with no emissions. This paper aims to review the prospects and challenges for the potential use of green hydrogen in several production and utilization pathways in the Philippines. The study identified green hydrogen production routes from available renewable energy sources in the country, including geothermal, hydropower, wind, solar, biomass, and ocean. Opportunities for several utilization pathways include transportation, industry, utility, and energy storage. From the analysis, this study proposes a roadmap for a green hydrogen economy in the country by 2050, divided into three phases: I–green hydrogen as industrial feedstock, II–green hydrogen as fuel cell technology, and III–commercialization of green hydrogen. On the other hand, the analysis identified several challenges, including technical, economic, and social aspects, as well as the corresponding policy implications for the realization of a green hydrogen economy that can be applied in the Philippines and other developing countries. 相似文献