首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The ternary MgVAl, MgVCr, MgVNi, quaternary MgVAlCr, MgVAlNi, MgVCrNi and quinary MgVAlCrNi alloys were produced by high energy ball milling (HEBM) under hydrogen pressure (3.0 MPa) as a strategy to find lightweight alloys for hydrogen storage applications. Most of the ternary and quaternary alloys presented multiphase structure, composed mainly of body-centered cubic (BCC) solid solutions and Mg-based hydrides. Only the quinary MgVAlCrNi high entropy alloy (HEA) formed a single-phase structure (BCC solid solution), which is a novel lightweight (ρ = 5.48 g/cm3) single-phase HEA. The hydrogen storage capacity of this alloy was found to be very low (approximately 0.3 wt% of H). Two non-equiatomic alloys with higher fraction of Mg and V (strong hydride former elements), namely Mg28V28Al19Cr19Ni6 and Mg26V31Al31Cr6Ni6, were then designed, aiming at higher storage capacity. Both alloys were produced by HEBM. The results show that the non-stoichiometric alloys also presented low hydrogen storage capacity. The low affinity of these alloys with hydrogen was discussed in terms of enthalpy of hydrogen solution and enthalpy of hydride formation of the single components. This study brought to light the importance of considering both enthalpy of hydrogen solution and enthalpy of hydride formation of the alloying elements for designing Mg-containing HEA for hydrogen storage. Once Mg has a positive enthalpy of hydrogen solution, the alloys composition must be balanced with alloying elements with higher hydrogen affinity, i.e., negative values of enthalpy of solution and hydride formation.  相似文献   

2.
Crystal structure and hydrogen storage properties of a novel equiatomic TiZrNbCrFe high-entropy alloy (HEA) were studied. The selected alloy, which had a A3B2-type configuration (A: elements forming hydride, B: elements with low chemical affinity with hydrogen) was designed to produce a hydride with a hydrogen-to-metal atomic ratio (H/M) higher than those for the AB2- and AB-type alloys. The phase stability of alloy was investigated through thermodynamic calculations by the CALPHAD method. The alloy after arc melting showed the dominant presence of a solid solution C14 Laves phase (98.4%) with a minor proportion of a disordered BCC phase (1.6%). Hydrogen storage properties investigated at different temperatures revealed that the alloy was able to reversibly absorb and fully desorb 1.9 wt% of hydrogen at 473 K. During the hydrogenation, the initial C14 and BCC crystal structures were fully converted into the C14 and FCC hydrides, respectively. The H/M value was 1.32 which is higher than the value of 1 reported for the AB2- and AB-type HEAs. The present results show that good hydrogen storage capacity and reversibility at moderate temperatures can be attained in HEAs with new configurations such as A3B2/A3B2H7.  相似文献   

3.
In this paper, we present the synthesis, first hydrogenation kinetics, thermodynamics and effect of cycling on the hydrogen storage properties of a V0.3Ti0.3Cr0.25Mn0.1Nb0.05 high entropy alloy. It was found that the V0.3Ti0.3Cr0.25Mn0.1Nb0.05 alloy crystallizes in body-centred cubic (BCC) phase with a small amount of secondary phase. The first hydrogenation is possible at room temperature without incubation time and reaches a maximum hydrogen storage capacity of 3.45 wt%. The pressure composition isotherm (P–C–I) at 298 K shows a reversible hydrogen desorption capacity of 1.78 wt% and a desorption plateau pressure of 80.2 kPa. The capacity loss is mainly due to the stable hydride with the desorption enthalpy of 31.1 kJ/mol and entropy of 101.8 J/K/mol. The hydrogen absorption capacity decreases with cycling due to incomplete desorption at room temperature. The hydrogen absorption kinetics increases with cycling and the rate-limiting step is diffusion-controlled for hydrogen absorption.  相似文献   

4.
The hydrogen absorption and desorption properties of a MgH2 – 1 mol.% Nb(V) ethoxide mixture are reported. The material was prepared by hand mixing the additive with previously ball-milled MgH2. Nb ethoxide reacts with MgH2 during heating, releasing C2H6 and H2, and producing MgO and Nb or Nb hydride. Hydriding and dehydriding are greatly enhanced by the use of the alkoxide. At 250 °C the material with Nb takes up 1.8 wt% in 30 s compared with 0.1 wt% of pure Mg, and releases 4.2 wt% in 30 min, whereas MgH2 without Nb does not appreciably desorb hydrogen. The absorption and desorption activation energies are reduced from 153 kJ/mol H2 to 94 kJ/mol H2, and from 176 kJ/mol H2 to 75 kJ/mol H2, respectively. The hydrogen sorption properties remain stable after 10 cycles at 300 °C. The kinetic improvement is attributed to the fine distribution of amorphous/nanometric NbHx achieved by the dispersion of the liquid additive.  相似文献   

5.
Ti–Cr–Nb hydrogen storage alloys with a body centered cubic (BCC) structure have been successfully prepared by melt-spin and Mo-doping. The crystalline structure, solidification microstructural evolution, and hydrogen storage properties of the corresponding alloys were characterized in details. The results showed that the hydrogen storage capacity of Ti–Cr–Nb ingot alloys increased from 2.2 wt% up to around 3.5 wt% under the treatment of melt-spin and Mo-doping. It is ascribed that the single BCC phase of Ti–Cr–Nb alloys was stabilized after melt-spin and Mo-doping, which has a higher theoretical hydrogen storage site than the Laves phase. Furthermore, the melt-spin alloy after Mo doping can further effectively increase the de-/absorption plateau pressure. The hydrogen desorption enthalpy change ΔH of the melt-spin alloy decreased from 48.94 kJ/mol to 43.93 kJ/mol after Mo-doping. The short terms cycling test also manifests that Mo-doping was effective in improving the cycle durability of the Ti–Cr–Nb alloys. And the BCC phase of the Ti–Cr–Nb alloys could form body centered tetragonal (BCT) or face center cubic (FCC) hydride phase after hydrogen absorption and transform to the original BCC phase after desorption process. This study might provide reference for developing reversible metal hydrides with favorable cost and acceptable hydrogen storage characteristics.  相似文献   

6.
The crystal structure and hydrogen storage properties of a novel equiatomic TiZrNbCrFeNi high-entropy alloy (HEA) were studied. The alloy, which had an AB-type configuration (A: elements forming hydride, B: elements with low chemical affinity with hydrogen), was selected with the aid of thermodynamic calculations employed by the CALPHAD method. The arc-melted AB-type TiZrNbCrFeNi alloy showed the presence of two C14 Laves phases in different fractions but with slight differences in unit cell parameters. Hydrogen storage properties investigated through pressure-composition-temperature absorption and desorption isotherms at different temperatures revealed that the alloy could absorb 1.5 wt% of hydrogen at room temperature without applying any activation procedure, but full desorption was not obtained. At 473 K, the alloy was able to reversibly absorb and fully desorb 1.1 wt% of hydrogen. After full hydrogenation at 473 K, the initial metallic C14 Laves phases were converted into their respective Laves phase hydrides. Under cycling, the fractions of two C14 Laves phases changed while one of the phases was more active to accommodate the hydrogen atoms. After dehydrogenation at 473 K, the alloy presented a single C14 Laves phase. The microstructural analysis, before and after cycling, showed a very well homogeneous microstructure and good distribution of elements.  相似文献   

7.
In this study, density functional theory calculations have been carried out to study the hydrogen storage properties of high entropy alloy (HEA) TiZrVMoNb. It reveals that a BCC→FCC phase transformation occurs when the hydrogen content reaches 1.5 wt% during hydrogenation process, and octahedral and tetrahedral interstitial sites are preferable for hydrogen occupation before and after phase transformation, respectively. Further energetic analyses show that different hydrogen occupations in HEAs play an important role in the thermal stability of hydrides. The maximum hydrogen storage capacity for TiZrVMoNb is predicted to be 2.65 wt%, which is comparable to the largest value of 2.7 wt% for TiZrVHfNb and larger than that of other reported HEA hydrogen storage materials reported in the literature. As compared with the previously reported HEA TiZrHfMoNb with the change of only one principal element, the TiZrVMoNb not only has much higher hydrogen storage capacity, but also has more moderate hydrogen desorption temperature. The difference in hydrogen storage properties between these two HEAs is mainly attributed to the atomic weight, site occupation, lattice distortion and chemical effect of metal elements. The present study thus suggests that the TiZrVMoNb HEA has great potential as hydrogen storage materials and proposes a strategy to enhance the hydrogen storage properties of HEAs.  相似文献   

8.
The purpose is to investigate the role of yttrium addition in improving hydride embrittlement resistance in Zr-1Nb alloy, because yttrium addition has been widely used to improve oxidation resistance of alloys. The results suggest that 0.2 wt.% yttrium addition can effectively lower hydrogen absorption in Zr-1Nb alloy. The microstructural characterization shows that the precipitated hydrides are interlinked to have a width of 200–600 nm and a shape of lamellar or “dendritic”. The electron backscattered diffraction (EBSD) results show that the crystallographic orientation relationship between precipitated hydrides and zirconium matrix is (0001)α-Zr//{111}δ-H0.62Zr0.38 or (0001)α-Zr//{100}δ-H0.62Zr0.38, depending on the position and morphology of hydrides. The depression of hydrogen absorption is attributed to the reduction of transgranular hydride precipitation by yttrium addition. This study provides an experimental basis for designing new zirconium alloys with enhanced hydrogen absorption resistance.  相似文献   

9.
Structural, hydrogen storage, and electrochemical properties of LaMgNi4 alloy were investigated in this study to determine whether it can be used as an active material of the negative electrode in nickel–metal hydride (Ni/MH) batteries. X-ray diffraction study showed that amorphization occurs at the first dehydrogenation cycle and was recovered crystallization after 873 K annealing.Maximum hydrogen storage capacity reached 1.4 wt% in the first hydrogenation under 373 K. The reannealed alloy showed improved reversible hydrogen storage capacity at ~0.9 wt% due to more LaNi5 phase composition. Electrodes prepared from the investigated alloy showed maximum discharge capacities of ~340 mAh/g at 10 mA/g. The LaMgNi4 alloy electrode exhibited satisfactory cycling stability remaining 47% of its initial capacity after 250 cycles. The negative cohesive energy indicated the exothermic process and stable compound structures of the LaMgNi4 alloy and its hydrides via Density functional theory calculations.  相似文献   

10.
There are two phase structures involved in ZrCo hydrides (ZrCoHx). When x ≤ 1, the α-phase hydride is generated when hydrogen atoms occupy the 3c and 12i sites. When 1 < x ≤ 3, three interstitial sites of 4c2, 8f1, and 8e are occupied by H, and in turn the β-phase hydride is formed. There is a disproportionation reaction in β-phase hydrides during hydrogen discharging process to produce the ZrH2 phase with higher thermal stability, leading to inferior hydrogen storage performance. In this study, the influence of hydrogen storage capacity on thermodynamic and lattice stabilities of α- and β-phase hydrides for each occupancy position is investigated under the framework of the first-principles study. The results indicate that the binding energy in the 3c site is higher compared with the 12i site under the condition of identical hydrogen storage capacity. Similarly, the binding energy is the largest for the 8e site compared with the other two sites, indicating that there is the least energy released in the reaction process. Thus, the 8e site is proved as the most unfavorable site in β-phase ZrCo hydrides, which is due to its degraded thermodynamic stability. Also, comparisons of mechanical properties and total density of states for each site in two hydride phases are presented to demonstrate that compound lattice stability in the 8e site is the poorest, suggesting that it is more likely to produce disproportionation. Furthermore, the dependence of hydrogen storage performance of β-phase hydrides on Ti/Rh doping is examined as well. It is discovered that there is improved thermodynamic stability and lattice stability in the 8e site for Zr0.875Ti0.125Co after Zr is partially substituted by Ti, which significantly enhances the disproportionation resistance. In contrast, when Co is partially replaced by Rh, there is a deterioration in the thermodynamic stability of ZrCo0.875Rh0.125 in the 8e site, but its lattice stability is somewhat improved.  相似文献   

11.
The effect of long-term hydrogen absorption/desorption cycling up to 3500 cycles on the hydrogen storage properties of LaNi3.8Al1.0Mn0.2 alloy was investigated. The pressure-composition (PC) isotherms for absorption/desorption and the absorption kinetics were measured at 433 K, 453 K and 473 K. X-ray diffraction analysis revealed that the alloy had a homogeneous hexagonal CaCu5 type structure and kept this structure even after 3500 cycles, but the diffraction peaks were broadened. The degree of peak broadening was increased with increase of the cycle number, but exhibiting a maximum after initial activation. The shapes of PCT curves after 300, 2000 and 3500 cycles were similar to that after initial activation. It was found that the alloy subjected to 300 cycles did not exhibit significant changes in hydrogen storage capacity, but the long-term cycling up to 2000 and 3500 cycles resulted in obvious decrease in hydrogen storage capacity. The degradation of the hydrogen capacity might be resulted from the formation of the irreversible sites and more stable hydride phase, though no new phase was found after absorption/desorption cycling from XRD pattern as shown in Fig. 6 because of the limitation of XRD analysis sensibility. The hydrogen absorption kinetics after 300 cycles was deteriorated but improved again after 2000 and 3500 cycles compared with that of after initial activation. The changes in hydrogenation properties of the alloy induced by cycling were discussed by considering the crystal structure, lattice strain and pulverization of the sample.  相似文献   

12.
In the present work, we have studied the hydrogen absorption–desorption properties of the Ti2CrV alloy, and effect of cycling on the hydrogen storage capacity. The material has been characterized for the structure, morphology, pressure composition isotherms, hydrogen storage capacity, hydrogen absorption kinetics and the desorption profile at different temperatures in detail. The Ti2CrV crystallizes in body centered cubic (bcc) structure like TiCrV. The pressure composition isotherm of the alloy has been measured at room temperature and at 373K. The Ti2CrV alloy shows maximum hydrogen storage capacity of 4.37 wt.% at room temperature. The cyclic hydrogen absorption capacity of Ti2CrV alloy has been investigated at room temperature upto 10th cycle. The hydrogen storage capacity decreased progressively with cycling initially, but the alloy can maintain steady cyclic hydrogen absorption capacity 3.5 wt.% after 5th cycle. To get insight about the desorption behavior of the hydride in-situ desorption has been done at different temperatures and the amount of hydrogen desorbed has been calculated. The TG (Thermo gravimetric) and DTA analysis has been done on uncycled hydride shows that the surface poisoned sample gives a desorption onset temperature of 675K. The DSC measurement of uncycle and multi-cycled saturated hydrides shows that the hydrogen desorption temperature decreasing with cycling.  相似文献   

13.
A study to determine the optimal content of Nb(V) ethoxide required to efficiently catalyze the H2 sorption kinetics in the Mg/MgH2 system is reported. The materials were synthesized by hand mixing different amounts of additive (from 0.10 to 1 mol%) to pre-milled MgH2. Considering kinetics and capacity the best performance corresponds to a 0.25 mol% of Nb ethoxide concentration. With this material, a remarkable kinetic behavior with excellent reversibility is obtained: 5.3 wt% and 5.1 wt% of hydrogen are absorbed and desorbed respectively at 300 °C in 3 min. At 250 °C the material absorbs 5.2 wt% of hydrogen and releases 3.7 wt% in 10 min. Thermal desorption starts at 247 °C and peaks at 268 °C. The H2 sorption properties of all the materials remain unchanged after 10 cycles of absorption and desorption at 300 °C, and the best material reversibly takes in and releases 5.3 wt% of H2 during a 10 min combined cycle. The kinetic improvement of the hydrogen desorption and absorption properties is attributed to an enhancement of the kinetic processes that occur on the surface of the material, due to the excellent spreading of the liquid additive at nanometric level, as revealed by SEM/EDS and TEM/EELS.  相似文献   

14.
High purity Ta2C was successfully prepared and the hydrogen absorption−desorption kinetic properties of MgH2−10 wt% Ta2C composites were investigated systematically. It was found that the hydrogen absorption of Mg−10 wt% Ta2C (20 nm) composite takes about 5 min to reach saturation at 573 K, and its hydride fully desorbs hydrogen within 15 min at 623 K. These kinetic properties are much better than those of the undoped Mg and MgH2 prepared under the same condition, respectively. The improvement in the hydrogen storage kinetics is ascribed to the catalytic effect of Ta2C and its inhibition role in crystallite growth.  相似文献   

15.
The Zr2(Co0.5Fe0.2Ni0.2V0.1) intermetallic alloy was prepared by arc melting method and its physical properties and hydrogen storage performance were investigated. XRD analysis by Rietveld refinement and Mössbauer spectroscopy measurements revealed a multiphase crystal structure, in which the dominant phases are C16 Laves phase. The hydrogen-induced cracks, chemical composition, and elements distribution were analyzed by SEM and EDX mapping. The optimum conditions for the activation process, hydrogen absorption kinetics, cyclic durability performance, and disproportionation behavior were discussed. Zr2(Co0.5Fe0.2Ni0.2V0.1) alloy has a high absorption kinetic rate, with an activation energy of 10.11 kJ/mol, high hydrogen capacity (2.1 wt%) at room temperature, and good anti-disproportionation behavior (hydrogen pressure up to 8 bar and temperature below 783K). The hydrogen capacity decreased in the first three cycles (~25%) and then remained almost stable, which is likely caused by the high stability of hydride. The studied hydride has interesting features that can be considered for practical applications.  相似文献   

16.
MgH2-based hydrogen storage materials are promising candidates for solid-state hydrogen storage allowing efficient thermal management in energy systems integrating metal hydride hydrogen store with a solid oxide fuel cell (SOFC) providing dissipated heat at temperatures between 400 and 600 °C. Recently, we have shown that graphite-modified composite of TiH2 and MgH2 prepared by high-energy reactive ball milling in hydrogen (HRBM), demonstrates a high reversible gravimetric H storage capacity exceeding 5 wt % H, fast hydrogenation/dehydrogenation kinetics and excellent cycle stability. In present study, 0.9 MgH2 + 0.1 TiH2 +5 wt %C nanocomposite with a maximum hydrogen storage capacity of 6.3 wt% H was prepared by HRBM preceded by a short homogenizing pre-milling in inert gas. 300 g of the composite was loaded into a storage tank accommodating an air-heated stainless steel metal hydride (MH) container equipped with transversal internal (copper) and external (aluminium) fins. Tests of the tank were carried out in a temperature range from 150 °C (H2 absorption) to 370 °C (H2 desorption) and showed its ability to deliver up to 185 NL H2 corresponding to a reversible H storage capacity of the MH material of appr. 5 wt% H. No significant deterioration of the reversible H storage capacity was observed during 20 heating/cooling H2 discharge/charge cycles. It was found that H2 desorption performance can be tailored by selecting appropriate thermal management conditions and an optimal operational regime has been proposed.  相似文献   

17.
Mg and Zr-based AB2 hydride composite was prepared by hydriding combustion synthesis (HCS) and the hydriding–dehydriding properties of HCS Mg–(20, 40 wt%)AB2 products were extensively examined. The dehydriding onset temperatures of the HCS Mg–20AB2 and Mg–40AB2 composites were 533 K and 493 K, respectively, which were lower than that of the MgH2. It is suggested that the well-dispersed Zr-based AB2 phase in a Mg composite prepared by HCS plays a crucial role in significantly improving its kinetic properties. Especially, the HCS Mg–20AB2 composite showed fully activated hydrogenation within the 8th cycle and reached a saturated H2 absorption capacity of 5.7 wt.% at 573 K in 10 min. In addition, the hydrogen capacity did not show any significant decrease even after 86 cycles. These results display a potential excellence of HCS processing in preparing Mg-based hydrogen storage materials.  相似文献   

18.
This work deals with the assessment of the thermo-kinetic properties of Mg–Fe based materials for hydrogen storage. Samples are prepared from MgxFe (x: 2, 3 and 15) elemental powder mixtures via low energy ball milling under hydrogen atmosphere at room temperature. The highest yield is obtained with Mg15Fe after 150 h of milling (90 wt% of MgH2). The thermodynamic characterization carried out between 523 and 673 K shows that the obtained Mg–Fe–H hydride systems have similar thermodynamic parameters, i.e. enthalpy and entropy. However, in equilibrium conditions, Mg15Fe has higher hydrogen capacity and small hysteresis. In dynamic conditions, Mg15Fe also shows better hydrogen capacity (4.85 wt% at 623 K absorbed in less than 10 min and after 100 absorption/desorption cycles), reasonably good absorption/desorption times and cycling stability in comparison to the other studied compositions. From hydrogen uptake rate measurements performed at 573 and 623 K, the rate-limiting step of the hydrogen uptake reaction is determined by fitting particle kinetic models. According to our results, the hydrogen uptake is diffusion controlled, and this mechanism does not change with the Mg–Fe proportion and temperature.  相似文献   

19.
For practical solid-state hydrogen storage, reversibility under mild conditions is crucial. Complex metal hydrides such as NaAlH4 and LiBH4 have attractive hydrogen contents. However, hydrogen release and especially uptake after desorption are sluggish and require high temperatures and pressures. Kinetics can be greatly enhanced by nanostructuring, for instance by confining metal hydrides in a porous carbon scaffold. We present for a detailed study of the impact of the nature of the carbon–metal hydride interface on the hydrogen storage properties. Nanostructures were prepared by melt infiltration of either NaAlH4 or LiBH4 into a carbon scaffold, of which the surface had been modified, varying from H-terminated to oxidized (up to 4.4 O/nm2). It has been suggested that the chemical and electronic properties of the carbon/metal hydride interface can have a large influence on hydrogen storage properties. However, no significant impact on the first H2 release temperatures was found. In contrast, the surface properties of the carbon played a major role in determining the reversible hydrogen storage capacity. Only a part of the oxygen-containing groups reacted with hydrides during melt infiltration, but further reaction during cycling led to significant losses, with reversible hydrogen storage capacity loss up to 40% for surface oxidized carbon. However, if the carbon surface had been hydrogen terminated, ∼6 wt% with respect to the NaAlH4 weight was released in the second cycle, corresponding to 95% reversibility. This clearly shows that control over the nature and amount of surface groups offers a strategy to achieve fully reversible hydrogen storage in complex metal hydride-carbon nanocomposites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号