首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cell-cell adhesion is essential for many immunological functions and is believed to be important in the regulation of hematopoiesis. Adhesive interactions between human endothelial cells and megakaryocytes were characterized in vitro using the CMK megakaryocytic cell line as well as marrow megakaryocytes. Although there was no adhesion between unactivated human umbilical vein endothelial cells (HUVEC) and megakaryocytes, treatment of HUVEC with inflammatory cytokines such as IL-1 beta, tumor necrosis factor alpha, INF-gamma, or the phorbol ester phorbol myristate acetate (PMA) resulted in a time- and dose-dependent increase in adhesion. Stimulation of marrow megakaryocytes or CMK cells with the cytokines IL-1 beta, GM-CSF, IL-6, IL-3, or PMA augmented their adhesion to endothelium. Monoclonal antibodies against the LFA-1 subunit of the leukocyte adherence complex CD18 inhibited the binding of marrow megakaryocytes or CMK cells to HUVEC. Adhesion blocking experiments also demonstrated that the VLA-4/VCAM-1 pathway was important for megakaryocyte attachment to HUVEC. Adhesion promoted maturation of megakaryocytic cells as measured by increased expression of glycoproteins GpIb and GpIIb/IIIa and by increased DNA content. These observations suggest that alterations in megakaryocyte adhesion may occur during inflammatory conditions, mediated by certain cytokines, resulting in augmented megakaryocyte maturation.  相似文献   

3.
4.
5.
Thrombopoietin (TPO, c-Mpl ligand) is considered to play an important role in the regulation of megakaryocytopoiesis and platelet production by activating the cytokine receptor c-Mpl. We have examined the binding of 125I-TPO to the human megakaryocytic cell line, CMK, and to primary human megakaryocytes. Scatchard analysis of TPO binding to its cognate receptor in megakaryocytic cells suggested the existence of a single class of c-Mpl receptors. CMK cells exhibited 1223 receptors per cell with a dissociation constant (Kd) of Kd = 223 pM, whereas primary human megakaryocytes exhibited 12140 receptors per cell and a dissociation constant of Kd = 749 pM. The pretreatment of CMK cells and primary bone marrow megakaryocytes with TPO resulted in a decreased binding of TPO to the c-Mpl receptors. This down-regulation was observed within 3 h and was not inhibited by cycloheximide. Phorbol ester, an activator of protein kinase C, also inhibited TPO binding to the c-Mpl receptors by reducing the number of these receptors. The pretreatment of CMK cells with IL-3, IL-6 and DMSO, all of which induced the differentiation of CMK cells, did not affect the binding of TPO to the c-Mpl receptors. These results suggest an additional mechanism, where protein kinase C may help to regulate the binding of TPO to these cells.  相似文献   

6.
7.
Mice lacking thrombopoietin (TPO), or its receptor c-Mpl, display defective megakaryocyte and platelet development and deficiencies in progenitor cells of multiple hematopoietic lineages. The contribution of alternative cytokines to thrombopoiesis in the absence of TPO signalling was examined in mpl-/- mice. Analysis of serum and organ-conditioned media showed no evidence of a compensatory overproduction of megakaryocytopoietic cytokines. However, consistent with a potential role in vivo, when injected into mpl-/- mice, interleukin-6 (IL-6) and leukemia inhibitory factor (LIF) retained the capacity to elevate megakaryocytes and their progenitors in hematopoietic tissues and increase circulating platelet numbers. However, double mutant mice bred to carry genetic defects both in c-Mpl and IL-3 or the alpha chain of the IL-3 receptor, displayed no greater deficiencies in megakaryocytes or platelets than mpl-deficient animals, suggesting absence of a physiologic role for IL-3 in the residual megakaryocytopoiesis and platelet production in these mice.  相似文献   

8.
9.
Thrombopoietin (TPO) is a hematopoietic growth factor that stimulates megakaryocytopoiesis and platelet production in vivo and promotes the development of identifiable megakaryocytes in vitro. We have developed a murine monoclonal antibody, BAH-1, raised against human megakaryocytic cells, which specifically recognizes the c-Mpl receptor and shows agonist activity by stimulating megakaryocytopoiesis in vitro. BAH-1 antibody specifically binds to platelets and to recombinant c-Mpl with high affinity. Similar to TPO, BAH-1 alone supported the formation of colony-forming unit-megakaryocyte (CFU-MK) colonies. The combination of BAH-1 plus interleukin-3 or of BAH-1 plus human TPO significantly increased the number of human CFU-MK colonies. In addition, BAH-1 monoclonal antibody stimulated the proliferation and maturation of primary bone marrow megakaryocytes in a dynamic heterogeneous liquid culture system. Individual large megakaryocytes as well as small megakaryocytic cells were observed in cultures of CD34(+) CD41(+) cells in the presence of BAH-1 antibodies. Similar to TPO, BAH-1 antibody induced a significant response of murine immature megakaryocytes as observed by an increase in the detectable numbers of acetylcholinesterase-positive megakaryocytes. No effects of BAH-1 antibody were observed on colony-forming unit-granulocyte-macrophage, burst-forming unit-erythroid, or colony-forming unit-erythroid colonies. In vivo studies showed that BAH-1, alone or in combination with TPO, expands the numbers of megakaryocytic progenitor cells in myelosuppressed mice. This antibody should prove useful in understanding the structure-function aspects of the c-Mpl receptor as well as in evaluating the effects of the sustained activation of this receptor in preclinical models of severe thrombocytopenia.  相似文献   

10.
11.
In recent years, many cytokines have been defined and some of them used clinically. In hematological malignancies, cytokines, including granulocyte colony-stimulating factor (G-CSF), have been widely used for leukopenia after chemotherapy. However, in acute myelogenous leukemia (AML), some leukemic cells may be induced to proliferate by these cytokines and they must be used with care. In this study, we have investigated cell reactivity and proliferation with G-CSF, granulocyte-macrophage colony-stimulating factor (GM-CMF), macrophage colony-stimulating factor (M-CSF), stem cell factor (SCF) and thrombopoietin (TPO) in cases of AML. We have also investigated the reactivity of some myeloid leukemia cell lines to TPO. G-CSF, GM-CSF, M-CSF, SCF and TPO caused proliferation of leukemic cells in 25%, 58.3%, 8.3%, 21.1% and 0% of cases, respectively. Because of this result, the use of G-CSF in AML should be regarded as potentially hazardous. TPO did not cause proliferation of leukemic cells in any case of AML, or in cell lines except MO7E, which is a megakaryocytic cell line. This result suggests that TPO might cause proliferation of some megakaryocytic leukemia cells. We cannot conclude that TPO does not cause proliferation of other AML cells, as the number of cases was small and it has been reported elsewhere that leukemia cells may proliferate when exposed to TPO in 50% of AML cases. Reactivity of AM L cells to TPO is an important factor when deciding the indications of TPO in AML and myelodysplastic syndrome.  相似文献   

12.
13.
14.
Little is known concerning the interaction of thrombopoietin (TPO) with other megakaryocyte-active cytokines in directing the early events of megakaryocyte development. Culture of CD34(+) cells in interleukins (IL) -1, -6, -11, plus stem cell factor (SCF; S) results in a 10- to 12-fold expansion in total cell numbers, whereas total CD41(+) megakaryocytes are expanded approximately 120-fold over input levels. Addition of TPO to IL-1, -6, -11, S generates a biphasic proliferation of CD41(+) cells, accelerates their rate of production, and results in an ex vivo expansion of more than 200-fold. The addition of Flt-3 ligand (FL) increases CD41+ cell expansion to approximately 380-fold over input levels. In the absence of TPO, approximately 95% of the expanded cells show the phenotype of promegakaryoblasts; TPO and/or FL addition increases CD41 antigen density and ploidy in a subpopulation of promegakaryoblasts. A moderate (approximately sevenfold) expansion of megakaryocyte progenitor cells (colony-forming unit-megakaryocyte) occurs in the presence of IL-1, -6, -11, S, and the addition of TPO to this cocktail yields an approximately 17-fold expansion. We conclude that early proliferative events in megakaryocyte development in vitro are regulated by multiple cytokines, and that TPO markedly affects these early developmental steps. However, by itself, TPO is neither necessary nor sufficient to generate a full proliferative/maturational in vitro response within the megakaryocyte compartment. TPO clearly affects terminal differentiation and the development of (some) high-ploidy human megakaryocytes. However, its limited in vitro actions on human cell polyploidization suggest that additional megakaryocyte-active cytokines or other signals are essential for the maximal development of human megakaryocytes.  相似文献   

15.
Kawasaki disease (KD) is an acute systemic vasculitis causing coronary arterial aneurysms and myocardial infarction in young children. Prominent thrombocytosis with increased megakaryocytes develops during the convalescent period. To clarify the mechanisms of thrombocytosis, we studied serum levels of thrombopoietin (TPO) and other thrombopoietic cytokines in 40 patients with KD (149 samples) and 106 age-matched controls using ELISA. TPO values in the controls were 1.94 +/- 0.69 fmol/ml (mean +/- SD) with a 95% reference interval of 0.85 to 3.27 fmol/ml. In the first week of KD, platelet counts were normal but TPO values increased (approximately 15.5 fmol/ml). TPO levels peaked on day 6 +/- 2 at 5.94 +/- 2.64 fmol/ml and then fell gradually. When platelet counts peaked in the second to third weeks, TPO levels were still high or comparable with the controls. TPO levels in KD patients with normal platelet counts were significantly higher than control levels. Interleukin (IL)-6 levels in the first week rose, but neither IL-11 nor leukemia inhibitory factor was detectable. These results suggest that TPO contributes to thrombocytosis in KD in conjunction with IL-6 and TPO production may be enhanced during the acute phase.  相似文献   

16.
We investigated the expression and function of Fas and Fas ligand (FasL) on peripheral blood lymphocytes (PBLs). The cells were stimulated with various cytokines or 12-0-tetradecanoyl phorbol 13-acetate (PMA) plus ionomycin. About 30% of unstimulated PBLs expressed Fas, and the expression was augmented by interleukin-1beta (IL-1beta), IL-2, tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma), or PMA plus ionomycin. Although only minimal FasL expression was detected on unstimulated PBLs, FasL expression was markedly induced by IL-2 or PMA plus ionomycin, suggesting that Fas and FasL were both expressed on IL-2-stimulated or PMA-plus-ionomycin-stimulated PBLs. Although IL-2-stimulated or PMA-plus-ionomycin-stimulated PBLs were positive for both Fas and FasL, no significant increase in apoptosis was demonstrated in these activated PBLs. In addition, treatment of PBLs with IL-2 or PMA plus ionomycin did not change anti-Fas-induced apoptosis, although these activated PBLs expressed Fas strongly when compared with unstimulated PBLs. Only IL-2-stimulated or PMA-plus-ionomycin-stimulated PBLs killed Fas+ target cells efficiently via the interaction of Fas on target cells with FasL of PBLs. Bcl-2 was constitutively expressed on unstimulated PBLs, but its expression was significantly augmented by IL-2 or PMA plus ionomycin. The expression of Bax was clearly induced only on IL-2-stimulated or PMA-plus-ionomycin-stimulated PBLs and that of other Bcl-2 family proteins such as Bcl-x and Bad could not be detected on human PBLs, including IL-2-stimulated or PMA-plus-ionomycin-stimulated PBLs. Our results suggest that PBLs activated by IL-2 or PMA plus ionomycin express both Fas and FasL and that they kill Fas+ target cells by using FasL on the surface. The resistance of these activated PBLs to Fas-mediated apoptosis may be due to the augmented Bcl-2 expression or the presence of Bcl-2:Bax heterodimers on these cells.  相似文献   

17.
18.
After 35 years of research, the physiological regulator of platelet production has been isolated and its gene cloned. This discovery originates from studies performed with the myeloproliferative leukemia virus (MPLV), a murine retrovirus which induces an acute myeloproliferative syndrome in adult mice. MPLV carries in its genome the v-mpl oncogene which corresponds to a truncated form the c-mpl proto-oncogene. c-mpl encodes a cytokine receptor (Mpl-R) belonging to the hematopoietin receptor superfamily. Among the hematopoietic cell lineages, Mpl-R is preferentially expressed on late megakaryocyte progenitors, megakaryocytes and platelets. The ligand for Mpl-R, called Mpl-L or TPO or MGDF or megapoietin, is a glycosylated hormone of 352 amino acids in human which comprises two domains: the N-terminus domain shares 50% similarity with erythropoietin and is responsible for the biological activity; the C-terminus part is required for secretion. Notwithstanding its major action on megakaryocytopoiesis and thrombocytopoiesis, Mpl-L also potentiates the action of other cytokines on several hematopoietic lineages. Mpl-L/TPO/MGDF, the homeostatic regulator of platelet production, might be a useful therapeutical cytokine to treat thrombocytopenia induced in patients by chemotherapy.  相似文献   

19.
Thrombopoietin (TPO) has recently been cloned and shown to regulate megakaryocyte and platelet production by activating the cytokine receptor c-mpl. To determine whether TPO is the only ligand for c-mpl and the major regulator of megakaryocytopoiesis, TPO deficient mice were generated by gene targeting. TPO-/- mice have a >80% decrease in their platelets and megakaryocytes but have normal levels of all the other hematopoietic cell types. A gene dosage effect observed in heterozygous mice suggests that the TPO gene is constitutively expressed and that the circulating TPO level is directly regulated by the platelet mass. Bone marrow from TPO-/- mice have decreased numbers of megakaryocyte-committed progenitors as well as lower ploidy in the megakaryocytes that are present. These results demonstrate that TPO alone is the major physiological regulator of both proliferation and differentiation of hematopoietic progenitor cells into mature megakaryocytes but that TPO is not critical to the final step of platelet production.  相似文献   

20.
Thrombopoietin (TPO) or Mpl ligand is the primary physiological regulator of platelet production. This cytokine is the most potent stimulator of the proliferation and differentiation of MK progenitor and precursor cells in vitro. It also acts additively or synergistically with several cytokines on progenitor cells from various hematopoietic lineages, including the primitive stem cells. The factor is an extremely potent thrombocytopoietic agent when administrated to normal animals, and it accelerates platelet and erythropoietic recovery in several models of myelosuppression. Phase I/II clinical trials are ongoing with no detectable adverse effects. Mpl ligand does not induce platelet aggregation, but it lowers the platelet sensitivity to physiological dose of agonists. In experimental mouse models, high and chronic dose of Mpl ligand results in myelofibrosis. TPO is constantly produced by the liver and the kidney; its plasmatic clearance occurs by binding to its receptor expressed on megakaryocytes and platelets. However, the full spectrum of the biological effects of this new cytokine is not fully understood, in particular its the role in the terminal stage of platelet production. In the near future, it is likely that new insights will be obtained in the physiopathological mechanisms underlying abnormal platelet production in human.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号