首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
通过在热模拟试验机上进行动态热模拟试验,测定35CrMo冷镦钢在不同冷速下连续冷却转变的膨胀曲线,再结合光学显微镜的微观组织观察,研究了过冷奥氏体连续冷却相变行为。实验结果表明:35CrMo钢在0.05-0.4℃/s冷却速度下的组织主要由铁素体+珠光体组成;当冷却速度为0.5℃/s时出现贝氏体组织,随着冷却速度的增加,贝氏体和珠光体含量逐渐增加;当冷却速度达到1.0℃/s时,组织主要为少量铁素体+珠光体+贝氏体。  相似文献   

2.
利用MMS-200热模拟试验机和光学显微镜研究了70kg级低碳贝氏体钢板在不同终轧温度和冷却速度下的相变规律。结果表明,随冷却速度的增大,钢中依次出现多边形铁素体、珠光体、针状铁素体、粒状贝氏体、下贝氏体和马氏体组织,奥氏体向铁素体相变温度Ar3降低,晶粒细化。随着终轧温度的降低,铁素体诱导相变明显增加,铁素体晶粒细化。  相似文献   

3.
以实现免退火冷镦钢SWRCH35KM在线软化处理为目标,研究了变形和冷却工艺制度对中碳冷镦钢组织演变和力学性能的影响。结果表明,采用分段缓冷制度,850~750℃终轧后均获得体积分数为60%~63%的铁素体加部分球化珠光体,随着终轧温度降低,铁素体量略有增加,晶粒尺寸从15~16.9μm细化至约10μm,珠光体球化趋势趋于显著。冷却制度对于实验钢力学性能有显著影响。采用轧后分段缓冷制度后,抗拉强度约为490~510MPa,伸长率为36.5%~40.5%,洛氏硬度为73HRB~78HRB;与直接空冷工艺相比,不同终轧温度下抗拉强度降低约为30~40MPa,伸长率提高1%~3%,洛氏硬度降低2HRB~3HRB。  相似文献   

4.
通过Gleeble-1500热模拟实验机对冷镦钢10B21(/%:0.20C,0.02Si,0.85Mn,0.014P,0.005S,0.001 8B)精轧前Φ28 mm圆坯进行控轧控冷工艺热模拟试验,以研究变形速率20 s~(-1),变形量65%时终轧温度(850~1 000℃)、吐丝温度(820~940℃)和相变区冷却速度(0.2~1.0℃/s)对该钢组织的影响。结果表明,增加吐丝温度和相变区冷却速度可明显提高钢中铁素体含量,增加相变区冷却速度,可有效地改善钢的带状组织。为了获得较高的铁素体含量、粗大的铁素体晶粒且较均匀的组织,以提高钢的冷镦性能,较佳的控轧控冷工艺为终轧温度950℃、吐丝温度910℃、相变区冷却速度1.0℃/s。  相似文献   

5.
通过热模拟实验,研究了冷却工艺参数对Ti微合金化高强钢组织和硬度的影响.结果表明:当终冷温度为700℃时,随着冷却速度的增大,铁素体和珠光体组织得到了显著细化,实验钢硬度增加;随着终冷温度的降低,多边形铁素体晶粒尺寸呈减小趋势,铁素体和珠光体含量逐渐降低,珠光体片层间距逐渐减小,贝氏体含量增加,相变强化和细晶强化共同作...  相似文献   

6.
利用MMS-200热模拟试验机测定了07MnNiMoVDR钢的动态CCT曲线,研究了07MnNiMoVDR钢奥氏体连续冷却时的相变行为规律和显微组织。结果表明:随着冷却速度的增大,其组织由铁素体+珠光体逐渐向贝氏体转变;随冷却速度不同,在CCT图中存在两个相变区,即低冷速的先共析铁素体+珠光体相变区、中冷速的贝氏体相变区。  相似文献   

7.
 采用热模拟试验机研究了X100管线钢的连续冷却相变规律和控轧控冷工艺中不同冷却制度下微观组织特征及显微硬度的变化规律。结果表明,随着冷却速度的升高和终冷温度的降低,试验钢微观组织逐渐细化,其中粒状贝氏体含量不断减少而板条贝氏体含量逐渐增加,显微硬度也随之增加;M/A岛含量随着冷却速度的增加而减小,随着终冷温度的降低呈现先降低后增加的“V”型趋势,且在340℃获得最低值。  相似文献   

8.
本文就热变形工艺参数对DH36热轧船板用钢组织变化规律进行了模拟研究,总结了γ→a相变后铁素体晶粒大小随变形量、终轧温度、冷却速度的变化规律,并借此讨论了DH36钢控轧控冷工艺。  相似文献   

9.
利用ThermecMastor-Z型热模拟试验机模拟CSP工艺条件,辅以金相显微镜(OM)、扫描电镜(SEM)和维氏硬度计等,研究65Mn钢的连续冷却转变规律及变形温度对其等温相变的影响。绘制了65Mn钢的动态CCT曲线。结果表明,当轧后冷速小于2℃/s时,试验钢可获得铁素体和珠光体组织。随着冷速的增大,试验钢中将出现贝氏体和马氏体组织,硬度增大。当冷速大于40℃/s时,试验钢中的组织全为马氏体,硬度达到678.05HV。此外,在研究不同变形温度对65Mn钢等温相变的影响时发现,第2道次变形温度为920℃时,珠光体组织多呈片层状,硬度为271.86HV;随着变形温度的降低,试验钢中铁素体含量增加,珠光体球化趋势明显,粒状珠光体含量增多。当变形温度下降至860℃时,试验钢的硬度降低至252.21HV,有利于其后续深加工。  相似文献   

10.
利用ThermecMastor-Z型热模拟试验机模拟CSP工艺条件,辅以金相显微镜(OM)、扫描电镜(SEM)和维氏硬度计等,研究65Mn钢的连续冷却转变规律及变形温度对其等温相变的影响。绘制了65Mn钢的动态CCT曲线。结果表明,当轧后冷速小于2℃/s时,试验钢可获得铁素体和珠光体组织。随着冷速的增大,试验钢中将出现贝氏体和马氏体组织,硬度增大。当冷速大于40℃/s时,试验钢中的组织全为马氏体,硬度达到678.05HV。此外,在研究不同变形温度对65Mn钢等温相变的影响时发现,第2道次变形温度为920℃时,珠光体组织多呈片层状,硬度为271.86HV;随着变形温度的降低,试验钢中铁素体含量增加,珠光体球化趋势明显,粒状珠光体含量增多。当变形温度下降至860℃时,试验钢的硬度降低至252.21HV,有利于其后续深加工。  相似文献   

11.
陈鑫  徐光  姚耔杉  王俊  魏智睿 《特殊钢》2021,42(3):63-66
用Gleeble3500热模拟试验机测定的连续冷却膨胀曲线,得出NM400钢临界相变点Ac1 = 719.4℃,Ac3 =847.8℃,结合金相法,利用Origin软件绘制了试验钢的过冷奥氏体连续冷却转变(CCT)曲线.结果表明,随着冷却速度增大,钢的显微硬度逐渐增大,显微组织逐渐由铁素体和珠光体过渡为贝氏体和马氏体,...  相似文献   

12.
分别利用Gleeble3500热模拟试验机和JMatPro材料计算软件获得低碳钢的临界相变温度;同时在热模拟试验机上,采用连续冷却压缩与控冷相结合的方法进行了不同终轧温度和轧后冷却速度的工艺模拟。试验结果表明:终轧温度及轧后冷却速度对实验钢最终组织形态影响明显,终轧温度在Ar3以上温度时,低碳钢获得均匀的等轴状组织,加快轧后冷却速度可细化晶粒组织;当终轧温度在Ar3温度附近时,低碳钢会发生形变诱导铁素体相变,轧后缓冷有利于组织均匀,快冷容易导致混晶;当终轧温度在Ar3温度以下时,轧后缓冷、快冷均获得混晶甚至明显的变形带组织。  相似文献   

13.
分别利用Gleeble3500热模拟试验机和JMat Pro材料计算软件获得实验钢的临界相变温度Ar3=835℃、Ar1=698℃、A3=892℃、A1=722℃;同时在热模拟试验机上,采用连续冷却压缩与控冷相结合的方法进行了不同终轧温度和轧后冷却速度的工艺模拟。试验结果表明:终轧温度及轧后冷却速度对实验钢最终组织形态影响明显,终轧温度在Ar3以上温度时,实验钢获得均匀的等轴状组织,加快轧后冷却速度可细化晶粒组织;当终轧温度在Ar3温度附近时,实验钢会发生形变诱导铁素体相变,轧后缓冷有利于组织均匀,快冷容易导致混晶;当终轧温度在Ar3温度以下时,轧后不论缓冷、快冷均获得混晶甚至明显的变形带组织。  相似文献   

14.
利用Thermecmastor-Z型热模拟试验机,结合金相显微镜(OM)、扫描电镜(SEM)、维氏硬度计等,系统研究了奥氏体区变形对50CrV4钢连续冷却相变和等温相变规律的影响。建立了试验钢动态CCT曲线。研究结果表明,奥氏体变形能促进连续冷却转变过程中铁素体-珠光体、贝氏体转变,但亦可提高奥氏体的机械稳定性,进而抑制马氏体转变,Ms点由331.6℃(奥氏体未变形)降低至291℃(950℃下变形50%+890℃下变形50%,变形速率均为5s-1,变形后冷速为20℃/s)。当轧后冷速小于0.5℃/s时,试验钢中可获得铁素体+珠光体组织。此外,在研究不同变形量对试验钢等温相变规律影响时发现,650℃等温时,试验钢中发生铁素体-珠光体相变。随着变形量的增加(由30%增加至50%),其等温相变动力学加快(相变完成时间由197.6s减小至136.5s),铁素体体晶粒尺寸、珠光体片层间距减小,硬度增加。  相似文献   

15.
25MnVK钢奥氏体的连续冷却相变   总被引:1,自引:0,他引:1  
采用THERMECMASTOR-Z热模拟试验机研究25MnVK钢变形奥氏体在连续冷却过程中的相变规律,用膨胀法结合金相组织以及硬度值测定该钢的连续冷却转变曲线(CCT).结果表明,该钢的奥氏体化温度为920 ℃.当连续冷却速度小于2 ℃/s时得到的组织为铁素体 珠光体,大于2 ℃/s时出现贝氏体,大于50 ℃/s出现马氏体组织,所以通过控制不同的冷速,可以得到适合的组织.为制定25MnVK钢加热制度和控冷工艺提供了基本条件.此外V的加入使得钢的组织转变得到明显的推迟,CCT曲线右移,钢的淬透性得到提高.  相似文献   

16.
利用动态相变仪分析Nb-Ti微合金化高强耐候钢在不同冷却速率下的显微组织变化规律,采用控轧控冷工艺获得高强热轧钢板,并通过72 h周期浸润腐蚀试验和腐蚀锈层元素分布分析对高强热轧钢板的腐蚀行为进行研究.结果表明:当冷却速度小于1℃/s时,变形后的奥氏体转变为铁素体、珠光体和贝氏体;随着冷却速率的增加,珠光体和铁素体逐渐减少并直至消失,贝氏体数量增加;采用控轧控冷工艺获得的高强钢板屈服强度为704 MPa,抗拉强度为753 MPa,伸长率为20.2%,-40℃低温冲击吸收功平均值为121 J;腐蚀后的实验钢与Q345B碳钢的相对失重率为52.11%,其表面锈层与铁基体结合紧密,表明Nb-Ti高强耐候钢在工业大气腐蚀环境下具有良好的耐腐蚀性能.  相似文献   

17.
王生朝  赵刚  鲍思前 《特殊钢》2012,33(6):56-58
通过Thermecmastor-Z热模拟试验机研究了WL510钢(/%:0.090C、0.13Si、1.45Mn、0.005S、0.019P、0.040Al、0.020Ti、0.030Nb)粗轧后板坯(36 mm×1 500 mm)在1~36℃/s连续冷却条件下的相变和组织的变化,并用热膨胀法测定了试验钢连续冷却转变(CCT)曲线。结果表明,试验钢WL510在1~23℃/s低冷却速度下,主要形成多边形铁素体和少量珠光体;当冷却速度≥30℃/s时,主要组织为细针状铁素体、少量细珠光体和岛状马氏体/奥氏体(M/A)随着冷却速度的增加,试验钢组织明显变细。  相似文献   

18.
通过热模拟试验、金相组织和维氏硬度检测方法,研究了管线钢X70在不同冷却速度、冷却方式及回火状态条件下的组织与硬度变化规律。研究表明:连续冷却方式下,随着冷却速度的增加,试验钢回火后,硬度增加变缓;阶梯冷却方式下,随着冷却速度的增加,试验钢硬度增加,经回火后硬度提高;阶梯与连续冷却方式相比,回火状态的试验钢硬度高。冷却速度为1℃/s时,组织为贝氏体+铁素体+少量珠光体,连续冷却条件下铁素体呈块状,珠光体团粗大,阶梯冷却条件下,提高变形后的冷却速度获得更多针状铁素体;当冷却速度大于5℃/s时,试验钢的组织为粒状贝氏体,颗粒状MA含量明显增多。不同冷却速度下的试样经过650℃,30 min回火后,珠光体含量增加,分布更均匀;随着冷却速度的增加,珠光体组织减少。  相似文献   

19.
 为了研究铌对高强抗震钢筋生产过程中组织转变的影响,通过热模拟试验对比研究了无铌碳素钢筋及铌微合金化钢筋(铌质量分数为0.03%)形变奥氏体在不同冷却速率下的组织和相变规律,获得动态CCT曲线。研究结果表明,添加0.03%铌使试验钢奥氏体连续冷却转变有明显变化。从连续冷却曲线(CCT)可看出,添加铌后,发生先共析铁素体、珠光体相变的冷却速度范围减小,铁素体、珠光体转变温度降低;贝氏体相变的冷却速度区间整体右移。添加铌能细化组织,各冷却速度下含铌钢的硬度均大于无铌钢。利用TEM对不同冷却速度下含铌钢中析出相进行观察,发现Nb(C,N)弥散分布于钢中,随着冷却速度的增加,析出的Nb(C,N)逐渐减少,析出相尺寸呈先减小后增大的规律,2 ℃/s冷却速度冷却得到的析出相尺寸细小且数量较多。  相似文献   

20.
通过热模拟实验,研究了冷却工艺参数对Ti微合金化高强钢组织和硬度的影响。结果表明:当终冷温度为700℃时,随着冷却速度的增大,铁素体和珠光体组织得到了显著细化,实验钢硬度增加;随着终冷温度的降低,多边形铁素体晶粒尺寸呈减小趋势,铁素体和珠光体含量逐渐降低,珠光体片层间距逐渐减小,贝氏体含量增加,相变强化和细晶强化共同作用使得实验钢的硬度逐渐增加;钢中存在少量粗大的TiN和Ti_4C_2S_2粒子,冷却速度由5℃/s增大到30℃/s, TiC粒子的析出数量明显增加,平均尺寸由8.1 nm减小到6.7 nm;终冷温度由700℃降到600℃,第二相粒子TiC的析出数量逐渐减少,平均析出粒子尺寸由6.7 nm减小到5.9 nm。研究结果为Ti微合金化高强钢控制冷却工艺的制定奠定了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号