首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
While heterologous germ cell transplantation was successful in pigs and goats, autologous transplantation alone has been reported to result in donor-derived spermatogenesis in cattle. The objective of this study was to investigate whether the transplantation of heterologous germ cells could result in colonization of recipient testes in cattle of different breeds. Testicular cells were isolated from 8 Bos taurus donor bull calves and then transferred into 15 Bos indicus-cross bull calves. All animals were prepubertal, donors were aged 5-7 months and recipients 5-11 months, and scrotal circumferences ranged from 15 to 22 cm. Single cell suspensions of donor testicular cells, prepared by enzymatic digestion, were labelled with fluorescent dyes PKH26 or CFDA-SE, before transfer into the rete testis of recipients under ultrasonographic guidance. To assess the longevity of colonization by donor cells, recipients were castrated 2-30 weeks after cell transfer. Donor cells were observed in 15/25 (60%) of the testes that received PKH26-labelled cells, whereas no CFDA-SE-positive cell was identified in any recipients. The maturity of the donors or recipients (measured by scrotal circumference) did not affect colonization potential. In freshly isolated tubules, clumps of PKH26-positive cells were observed, which indicated either cell division or extensive local colonization of specific areas of the tubules. In frozen sections, PKH26-positive cells were identified on the seminiferous tubule basement membrane, which indicated that these cells had successfully migrated from the tubule lumen and were likely to be spermatogonia. We conclude that PKH26 was more suitable for labelling donor testis cells and donor cells can be identified up to 6 months following transfer. These results indicate that allogeneic transplantation of testicular cells can occur between Bos taurus and Bos indicus cattle. Further studies will investigate functionality of transferred testicular cells.  相似文献   

2.
The aim of this study was to develop a method for spermatogonial stem cell transplantation into the bovine testis. Five-month-old Holstein-Friesian calves were used and half of the calves were hemicastrated to allow autologous transplantation and the other half were used for homologous transplantation. Approximately 20 g of each testis was used for cell isolation. On average 106 cells per gram of testis containing about 70% type A spermatogonia were isolated. The cells were frozen in liquid nitrogen until transplantation. Testes were irradiated locally with 10-14 Gy of X-rays to deplete endogenous spermatogenesis. At 2 months after irradiation, cells (approximately 10 x 10(6) were injected into the rete testis through a long injection needle (18 gauge), using ultrasonography and an ultrasound contrast solution. At 2.5 months after transplantation, calves were castrated and samples of testes were taken for histological examination. After 2.5 months in the irradiated non-transplanted control testes, only 45% of the tubules contained type A spermatogonia. However, after autologous spermatogonial transplantation, >80% of the tubule cross-sections contained type A spermatogonia. In addition, only 20% of the tubules of the control testes contained spermatocytes and, except for a few tubules (5%) with round spermatids, no more advanced germ cells were found. After autologous spermatogonial transplantation, about 60% of the tubules contained spermatocytes; 30% contained spermatids and in about 15% of tubules spermatozoa were found. No improvement in spermatogonial repopulation was found after homologous transplantation. The results of this study demonstrate, for the first time, successful autologous transplantation of bovine spermatogonial stem cells resulting in a complete regeneration of spermatogenesis.  相似文献   

3.
Transplantation of spermatogonial stem cells in cross-species has been widely used to study the function of Sertoli cells and the effect of phylogenetic distance between donor and recipient animals on the outcome of spermatogonial transplantation, whereas there have been only a few reports on the transplantation of testis tissue. The objective of the present study was to examine the development of grafted testes and the kinetics of spermatogenesis following syngeneic testicular transplantation in both male and female recipient Balb/c mice in an effort to establish an in vivo culture system and to compare the effects of host sex on spermatogenesis. The testes from 5-day-old Balb/c mice were transplanted under the dorsal skin of four-week-old mice. Twenty male and twenty female Balb/c mice were used as the hosts and each host received 4 grafts. The recipient mice were killed at 1, 2, 3, 5, 7, 9, 12 and 15 weeks after transplantation. The graft survival rate and graft size were measured. The status of spermatogenesis was assessed by histological analyses. The expression of the spermatid-specific Protamine-2 gene was examined by RT-PCR. Overall, 70.3% of the testicular grafts in male hosts and 67.2% in female hosts survived. All recovered grafts had increased in volume, some of them had increased by more than 30-fold. The architecture of the seminiferous tubules in female hosts appeared to be better than that in male hosts. The round spermatids were the most advanced germ cells until 15 weeks after transplantation, and no complete spermatozoon was observed in any of the grafts. The expression of protamine-2 was detected in grafts from 5 weeks posttransplantation in both male and female hosts, confirming that the spermatogenic cells differentiated into spermatids. In contrast to grafts, the testes of male hosts had a normal histological appearance. The results showed the schedule of spermatogenesis following syngeneic testicular transplantation in both male and female hosts. This model could be useful for further studies involving the endocrinology of the testis and the mechanisms of spermatogenesis.  相似文献   

4.
Isolation and purification of type A spermatogonia from the bovine testis   总被引:1,自引:0,他引:1  
The aim of this study was to isolate and purify bovine type A spermatogonia. Testes from 5-7-month-old calves were used to isolate germ cells using a two-step enzymatic digestion. During the isolation and purification steps, the viability of cells was determined using live/dead staining. The identity of type A spermatogonia during isolation and purification was determined under a light microscope equipped with a Nomarski lens. Isolated cells were characterized further by using specific markers for type A spermatogonia, including Dolichos biflorus agglutinin (DBA) and c-kit. The cell suspension was transplanted into immunodeficient recipient mouse testes and the colonization was assessed 1-3 months after transplantation, to assess the stem cell population among the isolated cells. After isolation, a cell suspension was obtained containing about 25% type A spermatogonia, which was enriched further by differential plating and separation on a discontinuous Percoll gradient. Finally, fractions containing 65-87% pure type A spermatogonia were obtained. Large and small type A spermatogonia with different numbers and sizes of nucleoli were found. DBA stained both large and small type A spermatogonia and its application in fluorescence-activated cell sorting (FACS) resulted in comparable percentages of type A spermatogonia to those determined by morphological examination under a light microscope equipped with a Nomarski lens. Nearly all of the large type A spermatogonia showed strong c-kit immunoreactivity, indicating that these cells had undergone at least an initial differentiation step. In contrast, approximately half of the small type A spermatogonia were negative for c-kit, indicating the presence of the spermatogonial stem cells in this population. At 3 months after transplantation, groups of bovine type A spermatogonia were found in most tubule cross-sections of the recipient mouse testes, showing the presence of spermatogonial stem cells among the isolated cells.  相似文献   

5.
Despite the knowledge of spermatogonial biology in adult mice, spermatogonial development in immature animals has not been fully characterized. Thus, the aim of this study was to evaluate the ontogeny of the morphological development of the spermatogonial lineage in C57BL/6 mouse testis, using high-resolution light microscopy. Spermatogonial morphology, chronology, and absolute number were determined for different ages postpartum (pp). The morphology of spermatogonia in immature mice was similar to that of adult spermatogonia, although their nuclear diameter was slightly smaller. The A(1) spermatogonia were first observed on day 2 pp, and only 24 h later, differentiating type A(3) and A(4) spermatogonia were observed in the seminiferous cords. This result indicated a shortening of the spermatogonial phase for immature mice of about ~2.5 days when compared with adult mice and suggests that gonocytes and/or A(1) spermatogonia could directly become A(4) spermatogonia, skipping the developmental sequence of type A spermatogonia. These A(4) spermatogonia are functional as they develop into type B spermatogonia by day 5 pp. At day 8 pp, while differentiation to spermatocytes begins, the A(und) spermatogonia reach their maximal numbers, which are maintained through adulthood. The various details of the spermatogonial behavior in immature normal mice described in this study can be used as a baseline for further studies under experimental or pathological conditions.  相似文献   

6.
7.
本文研究了莲房原花青素(LSPCs)对极低频电磁场(ELF-EMF)致雄性小鼠生殖系统损伤的预防作用。选用50只雄性ICR小鼠,随机分为对照组,ELF-EMF组和ELF-EMF+30、60、90 mg/kg LSPCs预处理组。LSPCs连续灌胃75 d,灌胃15 d后开始连续辐射60 d。ELF-EMF辐射处理后将小鼠处死,取出附睾、睾丸并称重,求睾体比,检测附睾中精子活率和精子畸形率,测定睾丸组织超氧化物歧化酶(superoxide dismutase,SOD)活性和丙二醛(malondialdehyde,MDA)含量,观察睾丸组织形态学变化。结果表明ELF-EMF辐射处理后小鼠睾丸组织形态发生严重改变,睾体比、精子活率及睾丸组织SOD活性显著降低,精子畸形率和睾丸组织MDA水平显著增高。经LSPCs预处理后辐射损伤得到改善,其中60、90 mg/kg LSPCs预处理组各项指标与ELF-EMF组相比均达到极显著差异(P0.01)。由此提示LSPCs对ELF-EMF导致的雄性小鼠生殖损伤有明显的预防作用。  相似文献   

8.
Effects of reduction of the number of primordial follicles on follicular development and concentrations of circulating hormones were examined in immature female rat offspring of dams given busulfan intraperitoneally on day 14 of gestation. The offspring of dams treated with 5 mg busulfan kg(-1) showed vaginal opening at an age comparable with the offspring of dams treated with 2.5 mg busulfan kg(-1) or with corn oil as a control, although they exhibited an irregular oestrous cycle until week 14 after birth. The serum concentrations of immunoreactive inhibin and FSH on day 26 after birth of the offspring treated with 5 mg busulfan kg(-1) were similar to those of age-matched controls. On day 15 after birth, however, the concentration of their immunoreactive inhibin was markedly lower than that of controls, whereas the concentration of their FSH was increased inversely. Comparison of the numbers of ovarian follicles in the controls and groups treated with 2.5 mg busulfan kg(-1) and 5 mg busulfan kg(-1) revealed that prenatal treatment with busulfan reduced the number of follicles in the primordial or primary phase and in the preantral phase on day 7 after birth. Although the increase of the ratio of the number of preantral follicles during days 7-13 after birth tended to vary with the prenatal dose of busulfan, the number of preantral follicles in the group treated with 5 mg busulfan kg(-1) was still smaller than in the controls. The concentration of serum immunoreactive inhibin of the offspring treated with busulfan was reduced on day 7 after birth without alteration of the concentration of gonadotrophin. On day 13 after birth, the concentration of serum immunoreactive inhibin was reduced only in the offspring treated with 5 mg busulfan kg(-1), and the concentration of serum FSH of the offspring was increased inversely as found on day 15 after birth. These results indicate that a reduction in the number of primordial follicles decreases the number of follicles that enter the growing phase, a major source of circulating inhibin in the neonatal and infantile ovary, and that consequently increased circulating FSH may accelerate follicular development to achieve puberty.  相似文献   

9.
It has been proposed that follistatin can modulate the actions of activins and/or other members of the transforming growth factor-beta superfamily of proteins on testicular function, since mice overexpressing follistatin showed spermatogenic disruption. However, since mice with targeted disruption of the follistatin gene die soon after birth, it is not feasible to determine the effect of the absence of follistatin on testicular function using this model. To further understand the role of follistatin on the development and maintenance of spermatogenesis, fetal testes, collected by Caesarean section at day 18 of gestation from follistatin null mice, were transplanted to the external ear of castrated recombination activating gene 1 immunocompromised male mice. The testicular grafts were then analysed 7-8 weeks after transplantation and showed that full spermatogenesis developed in both the testes of wild-type and follistatin null mice. This study indicates that, if follistatin is required to modulate spermatogenic development, it is not supplied by local testicular production but by circulating follistatin from the host mouse.  相似文献   

10.
Dazl knockout male mice are infertile because their germ cells are unable to complete the first meiotic prophase in the first wave of spermatogenesis and thereafter decrease in number due to a block at the A-aligned to A1 transition. The ability of the surviving somatic components of the testes to retain their function in the absence of mature germ cells was tested by injecting marked wild-type germ cell suspensions containing spermatogonial stem cells. Comparison of the frequency and extent of colonization of Dazl knockout testes with that of testes chemically depleted of germ cells showed little if any difference. It was concluded that Dazlko testes seem unimpaired in their ability to support spermatogenesis. Therefore, Dazlko testes provide a useful and reliable recipient in which to evaluate spermatogonial stem cells. The results furthermore demonstrate that the somatic compartment of the testis of these animals retains functionality.  相似文献   

11.
The role of the gonadotrophins in regulating numbers of Leydig and Sertoli cells during fetal and postnatal development was examined using normal mice and hypogonadal (hpg) mice, which lack circulating gonadotrophins. The disector method was used to determine the number of cells from day 16 of gestation until adulthood. The numbers of Leydig cells did not change significantly between day 16 of gestation and day 5 after parturition in normal mice and were not significantly different from numbers in hpg mice at any age up to day 5 after parturition. There was a 16-fold increase in the number of Leydig cells in normal mice between day 5 and day 20 after parturition, followed by a further doubling of number of cells between day 20 and adulthood. The number of Leydig cells in hpg testes did not change between day 5 and day 20 after parturition but doubled between day 20 and adulthood so that the number of cells was about 10% of normal values from day 20 onwards. Leydig cell volume was constant in normal animals from birth up to day 20 and then showed a 2.5-fold increase in adult animals. Leydig cell volume was normal in hpg testes at birth but decreased thereafter and was about 20% of normal volume in adult mice. The number of Sertoli cells increased continuously from day 16 of gestation to day 20 after gestation in normal mice and then remained static until adulthood. The number of Sertoli cells in hpg testes was normal throughout fetal life but was reduced by about 30% on day 1 (day of parturition). Thereafter, Sertoli cells proliferated at a slower rate but over a longer period in the hpg testis so that on day 20 after parturition the number of Sertoli cells was about 50% of normal values, whereas in adult mice the number was 65% of normal. The number of gonocytes did not change between day 16 of gestation and day 1 and did not differ between normal and hpg testes. The number of gonocytes increased nine-fold in normal testes but only three-fold in hpg testes between day 1 and day 5 after parturition. Gonocytes differentiated into spermatogonia in both normal and hpg testes between day 5 and day 20 after parturition. These results show: (i) that fetal development of both Sertoli and Leydig cells is independent of gonadotrophins; (ii) that normal differentiation and proliferation of the adult Leydig cell population (starting about day 10 after parturition) is dependent on the presence of gonadotrophins; and (iii) that the number of Sertoli cells after birth is regulated by gonadotrophins, although proliferation will continue, at a lower rate and for longer, in the absence of gonadotrophins.  相似文献   

12.
Melatonin has a direct inhibitory effect on the basal and oestradiol-stimulated mitotic activity of primary spermatogonia in the testis of the frog, Rana esculenta. In this study oestradiol was used to induce spermatogonial proliferation to verify the anti-proliferative effect of melatonin. The colchicine metaphase arrest technique was used. The results obtained from in vivo experiments confirm that oestradiol increases the mitotic index of primary spermatogonia and, for the first time, indicate that melatonin has an inhibitory role on the proliferation of primary spermatogonia in the frog testis. Similar results were obtained from testes of melatonin-injected frogs that were exposed to oestradiol in vitro; in fact spermatogonia were unresponsive to hormonal stimulation. In addition, in short-term cultured testes, melatonin (at physiological concentration) interferes with the effects of oestradiol on spermatogonial proliferation, supporting the hypothesis that melatonin exerts the inhibitory effect directly via its local action on the frog gonads. Morphological observation after in vivo or in vitro melatonin treatments indicates that Leydig cells display degenerative features, whereas in adjacent germinal tubules, Sertoli cells show heterochromatic nuclei. These results indicate that melatonin may act on Leydig cells and confirm that there is a paracrine interaction between interstitial and germinal compartments. The results of the present study indicate, for the first time, that melatonin may be directly involved in the inhibitory control of spermatogonial proliferation in the testis of the frog, R. esculenta.  相似文献   

13.
14.
Mice with mutations in the kisspeptin signaling pathway (Kiss1(-/-) or Gpr54(-/-)) have low gonadotrophic hormone levels, small testes, and impaired spermatogenesis. Between 2 and 7 months of age, however, the testes of the mutant mice increase in weight and in Gpr54(-/-) mice, the number of seminiferous tubules containing spermatids/spermatozoa increases from 17 to 78%. In contrast, the Kiss1(-/-) mice have a less severe defect in spermatogenesis and larger testes than Gpr54(-/-) mice at both 2 and 7 months of age. The reason for the improved spermatogenesis was investigated. Plasma testosterone and FSH levels did not increase with age in the mutant mice and remained much lower than in wild-type (WT) mice. In contrast, intratesticular testosterone levels were similar between mutant and WT mice. These data indicate that age-related spermatogenesis can be completed under conditions of low plasma testosterone and FSH and that intratesticular testosterone may contribute to this process. In addition, however, when the Gpr54(-/-) mice were fed a phytoestrogen-free diet, they showed no age-related increase in testes weight or improved spermatogenesis. Thus, both genetic and environmental factors are involved in the improved spermatogenesis in the mutant mice as they age although the mice still remain infertile. These data show that the possible impact of dietary phytoestrogens should be taken into account when studying the phenotype of mutant mice with defects in the reproductive axis.  相似文献   

15.
In mice and other mammals, spermatogenesis is maintained by spermatogonial stem cells (SSCs), a cell population belonging to undifferentiated type A spermatogonia. In the accepted model of SSC self-renewal, Asingle (As) spermatogonia are the stem cells, whereas paired (Apaired (Apr)) and chained (Aaligned (Aal)) undifferentiated spermatogonia are committed to differentiation. This model has been recently challenged by evidence that As and chained (Apr and Aal), undifferentiated spermatogonia are heterogeneous in terms of gene expression and function. The expression profile of several markers, such as GFRA1 (the GDNF co-receptor), is heterogeneous among As, Apr and Aal spermatogonia. In this study, we have analysed and quantified the distribution of GFRA1-expressing cells within the different stages of the seminiferous epithelial cycle. We show that in all stages, GFRA1+ chained spermatogonia (Apr to Aal) are more numerous than GFRA1+ As spermatogonia. Numbers of chained GFRA1+ spermatogonia are sharply reduced in stages VII-VIII when Aal differentiate into A1 spermatogonia. GFRA1 expression is regulated by GDNF and in cultures of isolated seminiferous tubules, we found that GDNF expression and secretion by Sertoli cells is stage-dependent, being maximal in stages II-VI and decreasing thereafter. Using qRT-PCR analysis, we found that GDNF regulates the expression of genes such as Tex14, Sohlh1 and Kit (c-Kit) known to be involved in spermatogonial differentiation. Expression of Kit was upregulated by GDNF in a stage-specific manner. Our data indicate that GDNF, besides its crucial role in the self-renewal of stem cells also functions in the differentiation of chained undifferentiated spermatogonia.  相似文献   

16.
The autosomal gene DAZL is a member of a family of genes (DAZL, DAZ, BOULE), all of which contain a consensus RNA binding domain and are expressed in germ cells. Adult male and female mice null for Dazl lack gametes. In order to define more precisely the developmental stages in germ cells that require Dazl expression, the patterns of germ cell loss in immature male and female wild-type (+/+, WT) and Dazl -/- (DazlKO) mice were analysed. In females, loss of germ cells occurred during fetal life and was coincident with progression of cells through meiotic prophase. In males, testes were recovered from WT and DazlKO males obtained before and during the first wave of spermatogenesis (days 2-19). Mitotically active germ cells were present up to and including day 19. Functional differentiation of spermatogonia associated with detection of c-kit positive cells did not depend upon expression of Dazl. RBMY-positive cells (A, intermediate, B spermatogonia, zygotene and preleptotene spermatocytes) were reduced in DazlKO compared with WT testes. Staining of cell squashes from day 19 testes with anti-gamma-H2AX and anti-SCP3 antibodies showed that germ cells from DazlKO males were unable to progress beyond the leptotene stage of meiotic prophase I. It was concluded that in the absence of Dazl, germ cells can complete mitosis, and embark on functional differentiation but that, in both sexes, progression through meiotic prophase requires this RNA binding protein.  相似文献   

17.
In primates, the time course of Sertoli cell proliferation and differentiation during puberty and its relationship with the expansion of undifferentiated type A spermatogonia that occurs at this critical stage of development are poorly defined. Mid and late juvenile and early and late pubertal male rhesus monkeys were studied. Testes were immersion fixed, embedded in paraffin, and sectioned at 5?μm. Sertoli cell number per testis, S-phase labeling (BrdU), and growth fraction (Ki67 labeling) were determined and correlated with corresponding parameters for undifferentiated type A spermatogonia (A dark and A pale). Dual fluorescence labeling was used in addition to histochemistry to monitor spermatogonial differentiation during the peripubertal period using GFRα-1 and cKIT as markers. While the adult complement of Sertoli cells/testis was attained in early pubertal monkeys after only a few weeks of exposure to the elevated gonadotropin secretion characteristic of this developmental stage, the number of undifferentiated type A spermatogonia several months later in mid pubertal monkeys was only 50% of that in adult testes. Both A dark and A pale spermatogonia exhibited high S-phase BrdU labeling at all stages of juvenile and pubertal development. Spermatogonial differentiation, as reflected histochemically and by relative changes in GFRα-1 and cKIT expression, was not observed until after the initiation of puberty. In the rhesus monkey and maybe in other higher primates including human, the pubertal proliferation of undifferentiated spermatogonia is insidious and proceeds in the wake of a surge in Sertoli cell proliferation following termination of the juvenile stage of development.  相似文献   

18.
To better understand the role(s) of progestogens during early stages of spermatogenesis, we carried out studies on the nuclear progesterone receptor (Pgr) of the Atlantic salmon. Its open-reading frame shows the highest similarity with other piscine Pgr proteins. When expressed in mammalian cells, salmon Pgr exhibited progestogen-specific, dose-dependent induction of reporter gene expression, with 17α,20β-dihydroxy-4-pregnen-3-one (DHP) showing the highest potency. We then analyzed testicular pgr mRNA and DHP plasma levels in animals during the onset of spermatogenesis, which were exposed to natural light or to constant light, to induce significant differences in testis growth. Grouping of the animals according to their progress through spermatogenesis showed that testicular pgr mRNA levels as well as DHP plasma levels first increased when germ cells had reached the stage of late type B spermatogonia and further increased when entered meiosis, i.e. when spermatocytes were present. However, in situ hybridization studies revealed that pgr mRNA expression was restricted to Sertoli cells, with a strong signal in Sertoli cells contacting type A/early type B spermatogonia, while Sertoli cells contacting larger germ cell clones with further differentiated stages (e.g. late type B spermatogonia) were less intensely/not stained. We conclude that the increase in pgr mRNA levels per pair of testis reflects, at least in part, the increased number of Sertoli cells enveloping type A and early type B spermatogonia. We propose that Sertoli cell-expressed Pgr may mediate DHP-stimulated early steps in spermatogenesis in Atlantic salmon, such as an increase in the number of new spermatogonial cysts.  相似文献   

19.
Germ cell proliferation, migration and survival during all stages of spermatogenesis are affected by stem cell factor signalling through the c-Kit receptor, the expression and function of which are vital for normal male reproductive function. The present study comprehensively describes the c-Kit mRNA and protein cellular expression profiles in germ cells of the postnatal and adult rodent testis, revealing their significant elevation in synthesis at the onset of spermatogenesis. Real-time PCR analysis for both mice and rats matched the cellular mRNA expression profile where examined. Localization studies in normal mouse testes indicated that both c-Kit mRNA and protein are first detectable in differentiating spermatogonia. In addition, all spermatogonia isolated from 8-day-old mice displayed detectable c-Kit mRNA, but 30-50% of these lacked protein expression. The c-Kit mRNA and protein profile in normal rat testes indicated expression in gonocytes, in addition to differentiating spermatogonia. However, in the irradiated adult rat testes, in which undifferentiated spermatogonia are the only germ cell type, mRNA was also detected in the absence of protein. This persisted at 3 days and 1 and 2 weeks following treatment with gonadotrophin-releasing hormone (GnRH) antagonist to stimulate spermatogenesis recovery. By 4 weeks of GnRH antagonist treatment, accompanying the emergence of differentiating spermatogonia, both mRNA and protein were detected. Based on these observations, we propose that c-Kit mRNA and protein synthesis are regulated separately, possibly by influences linked to testis maturation and circulating hormone levels.  相似文献   

20.
通过对小鼠的凝、出血时间,动、静脉血栓造模实验以及对大鼠凝血三项的检测实验,验证活性地龙蛋白胶囊在动物体内抗凝及抑制血栓生成的活性。ICR小鼠随机分为空白对照组,阳性药组,地龙低(22.50 mg/kg)、中(45.00 mg/kg)、高剂量组(90.00mg/kg),每天给予灌胃给药(1 mL/100 g),连续7 d。末次给药后1 h,于小鼠尾尖剪断和内眦球后静脉丛取血分别观察小鼠出、凝血时间。另有SD大鼠随机分为假手术组、模型组、阳性药组(13.00 mg/kg)、地龙低(15.63 mg/kg)、中(31.26 mg/kg)、高剂量组(62.52 mg/kg)。每天给予灌胃给药(1 mL/100 g),连续7 d。末次给药1 h后计算两侧颈总动脉及下腔静脉血栓形成抑制率以及眼底静脉丛取血观察凝血酶原时间(PT)、鞣花酸活化部分凝血活酶时间(APTT)、凝血酶时间(TT)。与正常组比较,地龙胶囊可以延长小鼠尾出血及凝血时间(p0.01),且具有剂量依赖性,高剂量组(90.00 mg/kg)延长尾出血活性(18.88 min)及凝血效果(82.63s)最好。另外,与模型组相比,地龙胶囊随剂量升高抑栓效果逐渐增强,高剂量组(62.52 mg/kg)活性最好(湿重抑制率76.53%;干重抑制率72.49%)。实验表明地龙胶囊具有抑制血栓生成的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号