首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
基于特征约束及区域相关的体视匹配方法   总被引:3,自引:0,他引:3  
立体匹配是计算机视觉领域的一个关键问题,同时也是难点问题。为了得到准确的高密度视差图,通过对基于区域和基于特征的体视方法的讨论,综合两种方法的优点,提出了基于边缘特征约束及区域相关的立体匹配算法。该方法首先利用基于特征技术来得到边缘特征点,对边缘特征点再做灰度等区域相关匹配处理,然后在匹配的边缘特征点约束下,对非边缘特征点采用区域相关算法进行匹配,得到整体高密度视差图。这样既缩小了匹配搜索空间,又保证了匹配的可靠性。实验结果表明,该算法具有良好的效果和实用价值。  相似文献   

2.
一种新的基于特征点的立体匹配算法   总被引:4,自引:0,他引:4       下载免费PDF全文
目前,立体匹配是计算机视觉领域中最活跃的研究主题之一。为了快速并更精确的对特征点进行立体匹配,本文提出了一种新的基于特征点的立体匹配算法。该方法独立于特征点的检测算法,先以扫描线作为匹配单元,然后以鲁棒函数为匹配代价函数,最后用顺序约束对每一匹配单元的视差图进行检测与校正。实验证明,该方法的匹配精度高于传统的基于NCC(norm alized cross-correlation)的立体匹配算法,并且运行时间快,可以应用于纯软件的基于特征点的立体视觉系统中。  相似文献   

3.
一种基于特征约束的立体匹配算法   总被引:11,自引:0,他引:11       下载免费PDF全文
立体匹配一直是计算机视觉领域的一个中心研究问题,为了得到适用于基于图象绘制技术的视图合成高密度视差图,提出了基于边缘特征约束的立体西欧算法,该方法首先利用基于特征技术来得到边缘特征点的准确视差图,然后在边缘特征点视差图的约束下,对非边缘特征点采用区域相关算法进行匹配,这样既缩小了匹配搜索空间,又保证了匹配的可靠性,边缘特征点和边缘特征点的匹配采用双向匹配技术又进一步保证了匹配的可靠性,实验结果表明,该算法效果良好,有实用价值。  相似文献   

4.
在研究区域匹配算法和特征匹配算法的基础上,提出了改进的基于视差梯度的区域匹配算法和基于尺度不变性的Harris角点特征匹配算法,并进一步利用互补策略将两种算法结合起来,提出了一种区域和特征匹配相结合的立体匹配算法,该算法具有速度快、精度高和鲁棒性强等优点。利用该算法提取视差图,进而提取深度图,最后利用OpenGL进行三维重建,获得了良好的重建效果。  相似文献   

5.
针对复杂光照条件下Sift算法对彩色图像匹配能力较差,基于Kubelka-Munk理论,提出了一种适用于未标定图像的准稠密立体匹配算法,有助于更精确地进行三维重建。该算法首先求出彩色图像各个像素的颜色不变量,提取彩色特征点并通过构造彩色Sift特征描述子进行初匹配,采用RANSAC鲁棒算法消除误匹配生成种子点;然后依据视差约束提出一种基于视差梯度均值自适应窗口方法,根据视差梯度均值调整搜索范围;最后采用最优先原则进行区域增长。实验证明,该算法能获得比较满意的匹配效果,是一种有效的用于三维重建的准稠密匹配算法。  相似文献   

6.
作为双目三维重建中的关键步骤,双目立体匹配算法完成了从平面视觉到立体视觉的转化.但如何平衡双目立体匹配算法的运行速度和精度仍然是一个棘手的问题.本文针对现有的局部立体匹配算法在弱纹理、深度不连续等特定区域匹配精度低的问题,并同时考虑到算法实时性,提出了一种改进的跨多尺度引导滤波的立体匹配算法.首先融合AD和Census变换两种代价计算方法,然后采用基于跨尺度的引导滤波进行代价聚合,在进行视差计算时通过制定一个判断准则判断图像中每一个像素点的最小聚合代价对应的视差值是否可靠,当判断对应的视差值不可靠时,对像素点构建基于梯度相似性的自适应窗口,并基于自适应窗口修正该像素点对应的视差值.最后通过视差精化得到最终的视差图.在Middlebury测试平台上对标准立体图像对的实验结果表明,与传统基于引导滤波器的立体匹配算法相比具有更高的精度.  相似文献   

7.
针对立体匹配算法中求解能量函数全局最小问题,提出一种基于协作Hopfield网络的迭代立体匹配算法.它采用两个具有相似结构的Hopfield神经网络协作求解匹配问题,两个网络的不同之处是匹配过程中所采用的基准图不同.然后根据左右一致性约束实现两个Hopfield网络之间的协作,从而避免落入局部最小.为加快收敛速度,该算法将视差图的最优搜索问题转换为二值神经网络的迭代收敛过程.利用局部匹配算法的结果预标记初始视差,以设定神经网络初始权重.并根据局部匹配算法中隐含的假定条件,提出了局部匹配算法视差结果的评估准则,以确定各像素的视差搜索范围,从而减少各次迭代过程中状态待确定的神经元个数.实验表明该方法在性能和收敛速度上都要优于传统的Boltzmann机方法.  相似文献   

8.
基于SIFT特征描述子的立体匹配算法   总被引:1,自引:0,他引:1  
目前,立体匹配是计算机视觉领域最活跃的研究课题之一。为了克服传统的局部特征匹配算法对噪声和图像灰度的非线性变换敏感的缺点,本文提出了一种新的基于SIFT(Scale Invariant Feature Transform)特征描述子的立体匹配算法。该算法利用图像梯度信息,构造基于三维梯度方向直方图的SIFT特征描述子作为区域特征描述符,通过立体视觉理论中的极线约束将匹配特征的搜索空间从二维降到一维,最后以基于特征描述子欧氏距离的最近邻匹配得到匹配结果。实验结果表明,该方法匹配精度高,对图像灰度的非线性变换比较鲁棒,可以应用于对匹配算法鲁棒性要求比较高的立体视觉系统中。  相似文献   

9.
深度图像中视差跳变的像素点匹配一直是立体匹配的挑战性问题之一.基于引导滤波的局部立体匹配算法通过考虑匹配图像内容,可以在保持深度图像边缘的同时提高匹配精度、加快匹配速度,但引导滤波会产生图像光晕,在图像边缘区域也会引入大量的噪声.为此,将引导滤波的岭回归扩展到多元回归,提出一种基于多元线性回归的立体匹配算法.首先将引导滤波中只含图像像素值这一单变量的回归方程扩展为基于图像像素值和梯度信息等多个变量的多元回归方程,对初始代价值进行滤波聚合,并与单独进行引导滤波的匹配代价聚合值进行加权组合提高图像边缘的匹配效果;然后根据代价聚合最小值与次小值之间的相互关系定义了视差选择可信度,解决了视差选择时的歧义问题.在Middlebury测试平台进行了实验的结果表明,文中算法有效地提高深度图像中视差跳变像素点的匹配精度,降低了匹配噪声;与最新的高性能立体匹配算法相比,该算法可以以较小的计算复杂度获得高质量的视差图.  相似文献   

10.
针对目前许多局部双目立体匹配方法在缺乏纹理区域、遮挡区域、深度不连续区域匹配精度低的问题,提出了基于多特征表示和超像素优化的立体匹配算法。通过在代价计算步骤中加入边缘信息特征,与图像局部信息代价相融合,增加了在视差计算时边缘区域的辨识度;在代价聚合步骤,基于超像素分割形成的超像素区域,利用米字骨架自适应搜索,得到聚合区域,对初始代价进行聚合;在视差精化步骤利用超像素分割信息,对匹配错误视差进行修正,提高匹配精度。基于Middlebury立体视觉数据集测试平台,与自适应权重AD-Census、FA等方法得出的视差图进行比较,该算法在深度不连续区域和缺乏纹理区域的匹配效果显著改善,提高了立体匹配精度。  相似文献   

11.
基于自适应迭代松弛的立体点对匹配鲁棒算法   总被引:1,自引:0,他引:1       下载免费PDF全文
图像匹配是立体视觉的重要部分,也是双目立体测量系统必须解决和最难解决的问题。为了对图像进行鲁棒性匹配,提出了一种基于自适应迭代松弛的立体点对匹配方法。该方法首先利用视差梯度约束来构造匹配支持度函数;然后通过松弛方法优化该函数来完成立体点对的匹配。由于利用了动态更新松弛匹配过程参数的方法,因此有效地降低了误匹配率和误剔除率。在此基础上还提出了对松弛过程结束后的匹配结果,再次使用视差梯度约束来进行进一步检验的策略,该策略能够以一定幅度的误剔除率提升为代价,大幅度降低了误匹配率,从而可满足许多要求严格限制误匹配率的应用。实验结果证明,该新算法是有效的,并已经用于一个双目立体测量原型系统当中。  相似文献   

12.
针对局部立体匹配在光照失真和弱纹理区域匹配精度低的问题,提出了一种多特征融合的代价计算和自适应十字窗口聚合的立体匹配算法。引入HSV颜色空间分量,结合改进后的Census变换和梯度信息作为匹配代价计算方法,排除了视差边界异常值的影响,增强了算法对光照失真的稳健性;提出了基于梯度信息和可变颜色阈值的自适应窗口代价聚合方法,提高了在弱纹理区域的匹配精度;通过视差计算和多步骤的视差精细得到了最终的视差结果。实验结果表明,所提算法较AD-Census算法在无光照失真条件下误匹配减少了3.24%,能有效解决视差边界和弱纹理区域错误匹配的问题,对光照失真稳健性好且能有效抑制噪声干扰。  相似文献   

13.
基于模糊判别的立体匹配算法   总被引:6,自引:1,他引:6       下载免费PDF全文
立体视觉一直是计算机视觉领域所研究的一个中心问题,而立体匹配则是立体视觉技术中最关键也是最困难的部分,就得到适用于基于图象绘制技术中视图合成的准确、高密度视差图(Disparity Map)而言,现有的一些方法存在一定的局限性。考虑到立体匹配过程中存在的不确定性和模糊性,本文将已获得广泛应用的模糊理论引入立体匹配领域,提出了基于模糊判别的立体匹配算法,并用实际图象与合成图象进行了实验验证,结果表明该算法效果良好,具有实用价值。  相似文献   

14.
We present a new feature based algorithm for stereo correspondence. Most of the previous feature based methods match sparse features like edge pixels, producing only sparse disparity maps. Our algorithm detects and matches dense features between the left and right images of a stereo pair, producing a semi-dense disparity map. Our dense feature is defined with respect to both images of a stereo pair, and it is computed during the stereo matching process, not a preprocessing step. In essence, a dense feature is a connected set of pixels in the left image and a corresponding set of pixels in the right image such that the intensity edges on the boundary of these sets are stronger than their matching error (which is the difference in intensities between corresponding boundary pixels). Our algorithm produces accurate semi-dense disparity maps, leaving featureless regions in the scene unmatched. It is robust, requires little parameter tuning, can handle brightnessdifferences between images, nonlinear errors, and is fast (linear complexity).  相似文献   

15.
开展基于视差和尺度不变特征变换(SIFT)的双目视觉移动目标识别和追踪的研究。首先采用基于梯度的立体匹配算法得到较准确的左右视图视差映射,其次通过视差映射提高基于SIFT特征的左右视图运动目标的匹配精度,最后利用视差映射和区域增长的方法相结合分别在左右视图完成运动目标的追踪。实验结果表明,基于视差信息和SIFT的双目视觉移动目标识别与追踪算法具有很好的准确性,能够在连续视频中完成左右视场中对同一物体的追踪。  相似文献   

16.
近年来双目立体匹配技术发展迅速,高精度、高分辨率、大视差的应用需求无疑对该技术的计算效率提出了更高的要求.由于传统立体匹配算法固有的计算复杂度正比于视差范围,已经难以满足高分辨率、大视差的应用场景.因此,从计算复杂度、匹配精度、匹配原理等多方面综合考虑,提出了一种基于PatchMatch的半全局双目立体匹配算法,在路径...  相似文献   

17.
目的 立体匹配是计算机双目视觉的重要研究方向,主要分为全局匹配算法与局部匹配算法两类。传统的局部立体匹配算法计算复杂度低,可以满足实时性的需要,但是未能充分利用图像的边缘纹理信息,因此在非遮挡、视差不连续区域的匹配精度欠佳。为此,提出了融合边缘保持与改进代价聚合的立体匹配。方法 首先利用图像的边缘空间信息构建权重矩阵,与灰度差绝对值和梯度代价进行加权融合,形成新的代价计算方式,同时将边缘区域像素点的权重信息与引导滤波的正则化项相结合,并在多分辨率尺度的框架下进行代价聚合。所得结果经过视差计算,得到初始视差图,再通过左右一致性检测、加权中值滤波等视差优化步骤获得最终的视差图。结果 在Middlebury立体匹配平台上进行实验,结果表明,融合边缘权重信息对边缘处像素点的代价量进行了更加有效地区分,能够提升算法在各区域的匹配精度。其中,未加入视差优化步骤的21组扩展图像对的平均误匹配率较改进前减少3.48%,峰值信噪比提升3.57 dB,在标准4幅图中venus上经过视差优化后非遮挡区域的误匹配率仅为0.18%。结论 融合边缘保持的多尺度立体匹配算法有效提升了图像在边缘纹理处的匹配精度,进一步降低了非遮挡区域与视差不连续区域的误匹配率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号