首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The purpose of this study was to determine whether sedentary obese women with knee OA initiating an exercise and weight loss program may experience more beneficial changes in body composition, functional capacity, and/or markers of health following a higher protein diet compared to a higher carbohydrate diet with or without GCM supplementation.

Methods

Thirty sedentary women (54 ± 9 yrs, 163 ± 6 cm, 88.6 ± 13 kg, 46.1 ± 3% fat, 33.3 ± 5 kg/m2) with clinically diagnosed knee OA participated in a 14-week exercise and weight loss program. Participants followed an isoenergenic low fat higher carbohydrate (HC) or higher protein (HP) diet while participating in a supervised 30-minute circuit resistance-training program three times per week for 14-weeks. In a randomized and double blind manner, participants ingested supplements containing 1,500 mg/d of glucosamine (as d-glucosamine HCL), 1,200 mg/d of chondroitin sulfate (from chondroitin sulfate sodium), and 900 mg/d of methylsulfonylmethane or a placebo. At 0, 10, and 14-weeks, participants completed a battery of assessments. Data were analyzed by MANOVA with repeated measures.

Results

Participants in both groups experienced significant reductions in body mass (-2.4 ± 3%), fat mass (-6.0 ± 6%), and body fat (-3.5 ± 4%) with no significant changes in fat free mass or resting energy expenditure. Perception of knee pain (-49 ± 39%) and knee stiffness (-42 ± 37%) was decreased while maximal strength (12%), muscular endurance (20%), balance indices (7% to 20%), lipid levels (-8% to -12%), homeostasis model assessment for estimating insulin resistance (-17%), leptin (-30%), and measures of physical functioning (59%), vitality (120%), and social function (66%) were improved in both groups with no differences among groups. Functional aerobic capacity was increased to a greater degree for those in the HP and GCM groups while there were some trends suggesting that supplementation affected perceptions of knee pain (p < 0.08).

Conclusions

Circuit style resistance-training and weight loss improved functional capacity in women with knee OA. The type of diet and dietary supplementation of GCM provided marginal additive benefits.

Trial Registration

ClinicalTrials.gov: NCT01271218  相似文献   

2.

Background

Augmenting fat oxidation is a primary goal of fitness enthusiasts and individuals desiring to improve their body composition. Performing aerobic exercise while fasted continues to be a popular strategy to achieve this outcome, yet little research has examined how nutritional manipulations influence energy expenditure and/or fat oxidation during and after exercise. Initial research has indicated that pre-exercise protein feeding may facilitate fat oxidation while minimizing protein degradation during exercise, but more research is needed to determine if the source of protein further influences such outcomes.

Methods

Eleven healthy, college-aged males (23.5?±?2.1?years, 86.0?±?15.6?kg, 184?±?10.3?cm, 19.7?±?4.4%fat) completed four testing sessions in a randomized, counter-balanced, crossover fashion after observing an 8–10?h fast. During each visit, baseline substrate oxidation and resting energy expenditure (REE) were assessed via indirect calorimetry. Participants ingested isovolumetric, solutions containing 25?g of whey protein isolate (WPI), 25?g of casein protein (CAS), 25?g of maltodextrin (MAL), or non-caloric control (CON). After 30?min, participants performed 30?min of treadmill exercise at 55–60% heart rate reserve. Substrate oxidation and energy expenditure were re-assessed during exercise and 15?min after exercise.

Results

Delta scores comparing the change in REE were normalized to body mass and a significant group x time interaction (p =?0.002) was found. Post-hoc comparisons indicated the within-group changes in REE following consumption of WPI (3.41?±?1.63?kcal/kg) and CAS (3.39?±?0.82?kcal/kg) were significantly greater (p <?0.05) than following consumption of MAL (1.57?±?0.99?kcal/kg) and tended to be greater than the non-caloric control group (2.00?±?1.91?kcal/kg, p =?0.055 vs. WPI and p =?0.061 vs. CAS). Respiratory exchange ratio following consumption of WPI and CAS significantly decreased during the post exercise period while no change was observed for the other groups. Fat oxidation during exercise was calculated and increased in all groups throughout exercise. CAS was found to oxidize significantly more fat (p <?0.05) than WPI during minutes 10–15 (CAS: 2.28?±?0.38?g; WPI: 1.7?±?0.60?g) and 25–30 (CAS: 3.03?±?0.55?g; WPI: 2.24?±?0.50?g) of the exercise bout.

Conclusions

Protein consumption before fasted moderate-intensity treadmill exercise significantly increased post-exercise energy expenditure compared to maltodextrin ingestion and tended to be greater than control. Post-exercise fat oxidation was improved following protein ingestion. Throughout exercise, fasting (control) did not yield more fat oxidation versus carbohydrate or protein, while casein protein allowed for more fat oxidation than whey. These results indicate rates of energy expenditure and fat oxidation can be modulated after CAS protein consumption prior to moderate-intensity cardiovascular exercise and that fasting did not lead to more fat oxidation during or after exercise.
  相似文献   

3.
Caloric restriction induces mitochondrial biogenesis and improves physical fitness in rodents. We aimed to provide evidence of how caloric restriction affects the body composition and physical performance of trained athletes and to evaluate the possible impact of an every-other-day feeding diet on nutritional deficiencies of micronutrients and essential fatty acids. The study was performed with 12 healthy male athletes by carrying out a 33% caloric restriction with respect to their usual diet. Athletes performed a maximal exercise stress test both before and after the caloric restriction period. Blood samples were taken before and after the caloric restriction at basal conditions and 30 min post-exercise. Although energy intake was reduced by about 33%, the contribution of carbohydrates, proteins, and lipids to total energy intake during the caloric restriction was similar to the original diet. The caloric restriction reduced the daily specific micronutrient intake to values lower than 90% of recommended dietary allowances. No effects were observed in blood parameters related to iron metabolism and tissue damage, glucose levels, lipid profiles, or erythrocyte fatty acid composition. In addition, oxidative damage markers decreased after the nutritional intervention. The caloric restriction intervention significantly reduced body weight and trunk, arm, and leg weights; it also caused a decrease in fat and lean body mass, the energy expenditure rate when performing a maximal exercise stress test, and the energy cost to run one meter at various exercise intensities. Furthermore, the intervention ameliorated the onset of the anaerobic phase of exercise. A caloric restriction improves athletes’ performance and energy efficiency, but reduces the daily intake of micronutrients; so, when caloric restriction programs are implemented micronutrient supplementation should be considered. The project was registered at ClinicalTrials.gov (NCT02533479).  相似文献   

4.

Background

Although studies have investigated the effects of hydration on performance measures, few studies have investigated how the temperature of the ingested liquid affects performance and core temperature during an exercise session. The hypothesis of the present study was that cold water would improve thermoregulation and performance as measured by bench repetitions to fatigue, broad jump for force and power and total time to exhaustion for cardiovascular fitness

Methods

Forty-five, physically fit, adult males (30.28 ± 5.4 yr, 1.77 ± 7.8 m, 83.46 ± 11.5 kg; 13.7 ± 4.8 %BF; 49.8 ± 6.3 ml/kg/min V02) completed two 60-minute exercise sessions. Subjects consumed either COLD (4°C) or room temperature (RT) water (22°C) in randomized order. Core temperature was measured every 15 minutes throughout each trial using a digestible thermometer. Three performance tests were performed upon completion of the exercise session: bench press to fatigue, standing broad jump, and bicycle time to exhaustion

Results

Although both groups significantly increased their core temperature (p<0.001) over the course of the exercise session and presented a significant decline in hydration status (p<0.001), participants in the COLD water trial had a significantly (p=0.024) smaller rise in core temperature (0.83°) over the duration of the trial in comparison to RT (1.13°). The participants in the COLD water trial were able to delay their increase in core body temperature for at least 30 minutes, whereas participants in the RT trial increased body temperature from baseline after 15 minutes. There was no significant difference between the COLD or the RT trials in broad jump and TTE performance tests. Bench press showed a small, albeit significant (p=0.046), decrease in performance when drinking COLD

Conclusion

Drinking cold water can significantly mediate and delay the increase in core body temperature during an exercise session in a moderate climate with euhydrated subjects. The ingestion of COLD improved performance for 49% and 51% of the participants in the broad jump and TTE performance tests respectively, but did not reach statistical significance. Moreover, although minimal, subjects experienced a decrease in performance on the bench press during the COLD.  相似文献   

5.

Background

The influence of feed restriction and different diet's caloric value on the aerobic and anaerobic capacity is unclear in the literature. Thus, the objectives of this study were to determine the possible influences of two diets with different caloric values and the influence of feed restriction on the aerobic (anaerobic threshold: AT) and anaerobic (time to exhaustion: Tlim) variables measured by a lactate minimum test (LM) in rats.

Methods

We used 40 adult Wistar rats. The animals were divided into four groups: ad libitum commercial Purina? diet (3028.0 Kcal/kg) (ALP), restricted commercial Purina? diet (RAP), ad libitum semi-purified AIN-93 diet (3802.7 Kcal/kg) (ALD) and restricted semi-purified AIN-93 diet (RAD). The animals performed LM at the end of the experiment, 48 h before euthanasia. Comparisons between groups were performed by analysis of variance (p < 0,05).

Results

At the end of the experiment, the weights of the rats in the groups with the restricted diets were significantly lower than those in the groups with ad libitum diet intakes. In addition, the ALD group had higher amounts of adipose tissue. With respect to energetic substrates, the groups subjected to diet restriction had significantly higher levels of liver and muscle glycogen. There were no differences between the groups with respect to AT; however, the ALD group had lower lactatemia at the AT intensity and higher Tlim than the other groups.

Conclusions

We conclude that dietary restriction induces changes in energetic substrates and that ad libitum intake of a semi-purified AIN-93 diet results in an increase in adipose tissue, likely reducing the density of the animals in water and favouring their performance during the swimming exercises.  相似文献   

6.

Background

The present study examines changes in body weight, fat mass, metabolic and hormonal parameters in overweight and obese pre- and postmenopausal women who participated in a weight loss intervention.

Methods

Seventy-two subjects were included in the analysis of this single arm study (premenopausal: 22 women, age 43.7 ± 6.4 years, BMI 31.0 ± 2.4 kg/m2; postmenopausal: 50 women, age 58.2 ± 5.1 years, BMI 32.9 ± 3.7 kg/m2). Weight reduction was achieved by the use of a meal replacement and fat-reduced diet. In addition, from week 6 to 24 participants attended a guided exercise program. Body composition was analyzed with the Bod Pod®. Blood pressures were taken at every visit and blood was collected at baseline and closeout of the study to evaluate lipids, insulin, cortisol and leptin levels.

Results

BMI, fat mass, waist circumference, systolic blood pressure, triglycerides, glucose, leptin and cortisol were higher in the postmenopausal women at baseline. Both groups achieved a substantial and comparable weight loss (pre- vs. postmenopausal: 6.7 ± 4.9 vs 6.7 ± 4.4 kg; n.s.). However, in contrast to premenopausal women, weight loss in postmenopausal women was exclusively due to a reduction of fat mass (-5.3 ± 5.1 vs -6.6 ± 4.1 kg; p < 0.01). In premenopausal women 21% of weight loss was attributed to a reduction in lean body mass. Blood pressure, triglycerides, HDL-cholesterol, and glucose improved significantly only in postmenopausal women whereas total cholesterol and LDL-cholesterol were lowered significantly in both groups.

Conclusion

Both groups showed comparable weight loss and in postmenopausal women weight loss was associated with a pronounced improvement in metabolic risk factors thereby reducing the prevalence of metabolic syndrome.  相似文献   

7.

Background

High protein diet has been known to cause metabolic acidosis, which is manifested by increased urinary excretion of nitrogen and calcium. Bodybuilders habitually consumed excessive dietary protein over the amounts recommended for them to promote muscle mass accretion. This study investigated the metabolic response to high protein consumption in the elite bodybuilders.

Methods

Eight elite Korean bodybuilders within the age from 18 to 25, mean age 21.5 ± 2.6. For data collection, anthropometry, blood and urinary analysis, and dietary assessment were conducted.

Results

They consumed large amounts of protein (4.3 ± 1.2 g/kg BW/day) and calories (5,621.7 ± 1,354.7 kcal/day), as well as more than the recommended amounts of vitamins and minerals, including potassium and calcium. Serum creatinine (1.3 ± 0.1 mg/dl) and potassium (5.9 ± 0.8 mmol/L), and urinary urea nitrogen (24.7 ± 9.5 mg/dl) and creatinine (2.3 ± 0.7 mg/dl) were observed to be higher than the normal reference ranges. Urinary calcium (0.3 ± 0.1 mg/dl), and phosphorus (1.3 ± 0.4 mg/dl) were on the border of upper limit of the reference range and the urine pH was in normal range.

Conclusions

Increased urinary excretion of urea nitrogen and creatinine might be due to the high rates of protein metabolism that follow high protein intake and muscle turnover. The obvious evidence of metabolic acidosis in response to high protein diet in the subjects with high potassium intake and intensive resistance exercise were not shown in this study results. However, this study implied that resistance exercise with adequate mineral supplementation, such as potassium and calcium, could reduce or offset the negative effects of protein-generated metabolic changes. This study provides preliminary information of metabolic response to high protein intake in bodybuilders who engaged in high-intensity resistance exercise. Further studies will be needed to determine the effects of the intensity of exercise and the level of mineral intakes, especially potassium and calcium, which have a role to maintain acid-base homeostasis, on protein metabolism in large population of bodybuilders.  相似文献   

8.

Background

Adequate dietary intake is important for promoting adaptation and prevention of musculoskeletal injury in response to large volumes of physical training such as Army Initial Entry Training (IET). The purpose of this study was to evaluate training volume and dietary intake and estimate energy balance in Army IET soldiers.

Methods

Dietary intake was assessed by collecting diet logs for three meals on each of three, non-consecutive days during the first week of IET. Training volume was measured across 13?weeks of training using Actigraph wGT3X accelerometers. Training intensity was classified using Sasaki vector magnitude three cut points. Energy expenditure estimates were calculated during weeks two and three of training using the modified Harris-Benedict equation and by estimation of active energy expenditure using metabolic equivalents for each classification of physical activity. All data is presented as mean?±?standard deviation.

Results

A total of 111 male soldiers (ht. =?±?173?±?5.8?cm, age?=?19?±?2?years, mass?=?71.6. ± 12.4?kg) completed diet logs and were monitored with Actigraphs. IET soldiers performed on average 273?±?62?min low, 107?±?42?min moderate, 26?±?22?min vigorous, and 10?±?21?min of very vigorous intensity physical activity daily across 13?weeks. The estimated total daily energy expenditure was on average 3238?±?457 kcals/d during weeks two and three of IET. Compared to week one caloric intake, there was a caloric deficit of 595?±?896 kcals/d on average during weeks two and three of IET. Regression analysis showed that body weight was a significant predictor for negative energy balance (adj. R2?=?0.54, p?<?0.001), whereby a 1?kg increase in body mass was associated with a 53?kcal energy deficit.

Conclusions

Based on week one dietary assessment, IET soldiers did not consume adequate calories and nutrients to meet training needs during red phase (weeks one through three). This may directly affect soldier performance and injury frequency. IET soldiers undergo rigorous training, and these data may help direct future guidelines for adequate nourishment to optimize soldier health and performance.
  相似文献   

9.

Background

Although several studies have investigated gender differences in the substrate and endocrine responses during and following endurance exercise, few have studied sex differences during a more prolonged recovery period post endurance exercise. The purpose of this study was to compare and characterize the endocrine and substrate profiles of trained male and female adult runners during the three-and-a-half hour recovery period from an endurance run.

Methods

After consuming a euenergetic diet (1.8 g·kg-1·d-1 protein, 26% fat, 58% carbohydrates, 42.8 ± 1.2 kcal/kg body weight) for 8 days, blood was collected from trained male (n = 6, 21 yrs, 70 kg, 180 cm, 9% body fat, VO2peak 78.0 ± 3.4 mL·kg FFM-1·min-1) and female (n = 6, 23 y, 66 kg, 170 cm, 29% body fat, VO2peak 71.6 ± 4.5 mL·kg FFM-1·min-1) endurance runners at rest and during recovery from a 75 min run at 70% VO2peak. Circulating levels of glucose, lactate, free fatty acids (FFAs), insulin, cortisol, growth hormone (GH), and free insulin-like growth factor I (IGF-I) were measured.

Results

During the recovery period, females experienced increases in glucose, lactate and insulin while no changes were noted in men (P < 0.05). Males experienced increases in GH and decreases in IGF-I levels respectively (P < 0.05) while no changes were observed in females. FFA levels increased during recovery from endurance exercise, but changes were not different between genders.

Conclusion

These data further document gender differences in substrate and endocrine changes during a prolonged recovery period following endurance exercise. Future studies are needed to evaluate the effect of differing diets and nutritional supplements on these gender-specific post-exercise substrate and endocrine differences.  相似文献   

10.

Background

We investigated the ergogenic effects of betaine (B) supplementation on strength and power performance.

Methods

Twelve men (mean ± SD age, 21 ± 3 yr; mass, 79.1 ± 10.7 kg) with a minimum of 3 months resistance training completed two 14-day experimental trials separated by a 14-day washout period, in a balanced, randomized, double-blind, repeated measures, crossover design. Prior to and following 14 days of twice daily B or placebo (P) supplementation, subjects completed two consecutive days (D1 and D2) of a standardized high intensity strength/power resistance exercise challenge (REC). Performance included bench, squat, and jump tests.

Results

Following 14-days of B supplementation, D1 and D2 bench throw power (1779 ± 90 and 1788 ± 34 W, respectively) and isometric bench press force (2922 ± 297 and 2503 ± 28 N, respectively) were increased (p < 0.05) during REC compared to pre-supplementation values (1534 ± 30 and 1498 ± 29 W, respectively; 2345 ± 64 and 2423 ± 84 N, respectively) and corresponding P values (1374 ± 128 and 1523 ± 39 W; 2175 ± 92 and 2128 ± 56 N, respectively). Compared to pre-supplementation, vertical jump power and isometric squat force increased (p < 0.05) on D1 and D2 following B supplementation. However, there were no differences in jump squat power or the number of bench press or squat repetitions.

Conclusion

B supplementation increased power, force and maintenance of these measures in selected performance measures, and these were more apparent in the smaller upper-body muscle groups.  相似文献   

11.

Background

To examine the effects of higher-protein diets on endogenous glucose metabolism in healthy, physically active adults, glucose turnover was assessed in five endurance-trained men (age 21.3 ± 0.3 y, VO2peak 70.6 ± 0.1 mL kg-1 min-1) who consumed dietary protein intakes spanning the current dietary reference intakes.

Findings

Using a randomized, crossover design, volunteers consumed 4 week eucaloric diets providing either a low (0.8 g kg-1 d-1; LP), moderate (1.8 g kg-1 d-1; MP), or high (3.6 g kg-1 d-1; HP) level of dietary protein. Glucose turnover (Ra, glucose rate of appearance; and Rd glucose rate of disappearance) was assessed under fasted, resting conditions using primed, constant infusions of [6,6-2H2] glucose. Glucose Ra and Rd (mg kg-1 min-1) were higher for MP (2.8 ± 0.1 and 2.7 ± 0.1) compared to HP (2.4 ± 0.1 and 2.3 ± 0.2, P < 0.05) and LP (2.3 ± 0.1 and 2.2 ± 0.1, P < 0.01) diets. Glucose levels (mmol/L) were not different (P > 0.05) between LP (4.6 ± 0.1), MP (4.8 ± 0.1), and HP (4.7 ± 0.1) diets.

Conclusions

Level of protein consumption influenced resting glucose turnover in endurance athletes in a state of energy balance with a higher rate of turnover noted for a protein intake of 1.8 g kg-1 d-1. Findings suggest that consumption of protein in excess of the recommended dietary allowance but within the current acceptable macronutrient distribution range may contribute to the regulation of blood glucose when carbohydrate intake is reduced by serving as a gluconeogenic substrate in endurance-trained men.  相似文献   

12.

Purpose

The effects of creatine supplementation on muscle metabolism and exercise performance during a simulated endurance road race was investigated.

Methods

Twelve adult male (27.3 ± 1.0 yr, 178.6 ± 1.4 cm, 78.0 ± 2.5 kg, 8.9 ± 1.1 %fat) endurance-trained (53.3 ± 2.0 ml* kg-1* min-1, cycling ~160 km/wk) cyclists completed a simulated road race on a cycle ergometer (Lode), consisting of a two-hour cycling bout at 60% of peak aerobic capacity (VO2peak) with three 10-second sprints performed at 110% VO2 peak every 15 minutes. Cyclists completed the 2-hr cycling bout before and after dietary creatine monohydrate or placebo supplementation (3 g/day for 28 days). Muscle biopsies were taken at rest and five minutes before the end of the two-hour ride.

Results

There was a 24.5 ± 10.0% increase in resting muscle total creatine and 38.4 ± 23.9% increase in muscle creatine phosphate in the creatine group (P < 0.05). Plasma glucose, blood lactate, and respiratory exchange ratio during the 2-hour ride, as well as VO2 peak, were not affected by creatine supplementation. Submaximal oxygen consumption near the end of the two-hour ride was decreased by approximately 10% by creatine supplementation (P < 0.05). Changes in plasma volume from pre- to post-supplementation were significantly greater in the creatine group (+14.0 ± 6.3%) than the placebo group (-10.4 ± 4.4%; P < 0.05) at 90 minutes of exercise. The time of the final sprint to exhaustion at the end of the 2-hour cycling bout was not affected by creatine supplementation (creatine pre, 64.4 ± 13.5s; creatine post, 88.8 ± 24.6s; placebo pre, 69.0 ± 24.8s; placebo post 92.8 ± 31.2s: creatine vs. placebo not significant). Power output for the final sprint was increased by ~33% in both groups (creatine vs. placebo not significant).

Conclusions

It can be concluded that although creatine supplementation may increase resting muscle total creatine, muscle creatine phosphate, and plasma volume, and may lead to a reduction in oxygen consumption during submaximal exercise, creatine supplementation does not improve sprint performance at the end of endurance cycling exercise.  相似文献   

13.

Purpose

The purpose of this study was to determine the effects of supplementation with a water-soluble cinnamon extract (Cinnulin PF®) on body composition and features of the metabolic syndrome.

Methods

Twenty-two subjects with prediabetes and the metabolic syndrome (mean ± SD: age, BMI, systolic blood pressure [SBP], fasting blood glucose [FBG]: 46.0 ± 9.7 y; 33.2 ± 9.3 kg/m2; 133 ± 17 mm Hg; 114.3 ± 11.6 mg/dL) were randomly assigned to supplement their diet with either Cinnulin PF® (500 mg/d) or a placebo for 12-weeks. Main outcome measures were changes in FBG, SBP, and body composition measured after 12-weeks of supplementation. The primary statistical analyses consisted of two factor (group × time), repeated-measures ANOVA for between group differences over time. In all analyses, an intent-to-treat approach was used and significance was accepted at P < 0.05.

Results

Subjects in the Cinnulin PF® group had significant decreases in FBG (-8.4%: 116.3 ± 12.8 mg/dL [pre] to 106.5 ± 20.1 mg/dL [post], p < 0.01), SBP (-3.8%: 133 ± 14 mm Hg [pre] to 128 ± 18 mm Hg [post], p < 0.001), and increases in lean mass (+1.1%: 53.7 ± 11.8 kg [pre] to 54.3 ± 11.8 kg [post], p < 0.002) compared with the placebo group. Additionally, within-group analyses uncovered small, but statistically significant decreases in body fat (-0.7%: 37.9 ± 9.2% [pre] to 37.2 ± 8.9% [post], p < 0.02) in the Cinnulin PF® group. No significant changes in clinical blood chemistries were observed between groups over time.

Conclusion

These data support the efficacy of Cinnulin PF® supplementation on reducing FBG and SBP, and improving body composition in men and women with the metabolic syndrome and suggest that this naturally-occurring spice can reduce risk factors associated with diabetes and cardiovascular diseases.  相似文献   

14.

Objective

To investigate the effect of commercial weight loss programmes on macronutrient composition and micronutrient adequacy over a 2 month period.

Design

Adults were randomly allocated to follow the Slim Fast Plan, Weight Watchers Pure Points Programme, Dr Atkins' New Diet Revolution, or Rosemary Conley's "Eat Yourself Slim" Diet & Fitness Plan.

Setting

A multi-centre randomised controlled trial.

Subjects

293 adults, mean age 40.3 years and a mean BMI 31.7 (range 27–38) were allocated to follow one of the four diets or control group. Subjects completed a 7-day food and activity diary at baseline (prior to randomisation) and after 2 months. Diet records were analysed for nutrient composition using WinDiets (research version).

Results

A significant shift in the macronutrient composition of the diet with concurrent alteration of the micronutrient profile was apparent with all diets. There was no evidence to suggest micronutrient deficiency in subjects on any of the dietary regimens. However, those sub-groups with higher needs for specific micronutrients, such as folate, iron or calcium may benefit from tailored dietary advice.

Conclusion

The diets tested all resulted in considerable macronutrient change and resulted in an energy deficit indicating dietary compliance. Health professionals and those working in community and public health should be reassured of the nutritional adequacy of the diets tested.

Trial Registration Number

NCT00327821  相似文献   

15.

Background

In this study we assessed whether a liquid carbohydrate-protein (C+P) supplement (0.8 g/kg C; 0.4 g/kg P) ingested early during recovery from a cycling time trial could enhance a subsequent 60 min effort on the same day vs. an isoenergetic liquid carbohydrate (CHO) supplement (1.2 g/kg).

Methods

Two hours after a standardized breakfast, 15 trained male cyclists completed a time trial in which they cycled as far as they could in 60 min (AMex) using a Computrainer indoor trainer. Following AMex, subjects ingested either C+P, or CHO at 10, 60 and 120 min, followed by a standardized meal at 4 h post exercise. At 6 h post AMex subjects repeated the time trial (PMex).

Results

There was a significant reduction in performance for both groups in PMex versus AMex. However, performance and power decreases between PMex and AMex were significantly greater (p ≤ 0.05) with CHO (-1.05 ± 0.44 km and -16.50 ± 6.74 W) vs C+P (-0.30 ± 0.50 km and -3.86 ± 6.47 W). Fat oxidation estimated from RER values was significantly greater (p ≤ 0.05) in the C+P vs CHO during the PMex, despite a higher average workload in the C+P group.

Conclusion

Under these experimental conditions, liquid C+P ingestion immediately after exercise increases fat oxidation, increases recovery, and improves subsequent same day, 60 min efforts relative to isoenergetic CHO ingestion.  相似文献   

16.

Background  

Of concern to health educators is the suggestion that college females practice diet and health behaviors that contradict the 2005 dietary guidelines for Americans. In this regard, there remain gaps in the research related to dieting among college females. Namely, do normal weight individuals diet differently from those who are overweight or obese, and are there dieting practices used by females that can be adapted to promote a healthy body weight? Since it is well recognized that females diet, this study seeks to determine the dieting practices used among normal, overweight, and obese college females (do they diet differently) and identify dieting practices that could be pursued to help these females more appropriately achieve and maintain a healthy body weight.  相似文献   

17.

Background

As most sport drinks contain some form of non-nutritive sweetener (e.g. aspartame), and with the variation in blood glucose regulation and insulin secretion reportedly associated with aspartame, a further understanding of the effects on insulin and blood glucose regulation during exercise is warranted. Therefore, the aim of this preliminary study was to profile the insulin and blood glucose responses in healthy individuals after aspartame and carbohydrate ingestion during rest and exercise.

Findings

Each participant completed four trials under the same conditions (45?min rest?+?60?min self-paced intense exercise) differing only in their fluid intake: 1) carbohydrate (2% maltodextrin and 5% sucrose (C)); 2) 0.04% aspartame with 2% maltodextrin and 5% sucrose (CA)); 3) water (W); and 4) aspartame (0.04% aspartame with 2% maltodextrin (A)). Insulin levels dropped significantly for CA versus C alone (43%) between pre-exercise and 30?min, while W and A insulin levels did not differ between these time points.

Conclusions

Aspartame with carbohydrate significantly lowered insulin levels during exercise versus carbohydrate alone.  相似文献   

18.

Background

It has been shown that supplementation with creatine (Cr) and glycerol (Gly), when combined with glucose (Glu) necessary for the enhancement of Cr uptake by skeletal muscle, induces significant improvements in thermoregulatory and cardiovascular responses during exercise in the heat.

Purpose

To determine whether Cr/Gly-induced thermoregulatory and cardiovascular responses are maintained when the majority (~75%) of the Glu in the Cr/Gly supplement is replaced with the insulintropic agent alpha lipoic acid (Ala).

Methods

22 healthy endurance trained cyclists were randomly assigned to receive either 20?g/day (4?×?5?g/day) of Cr, 2?g .kg-1 BM per day (4?×?0.5?g .kg-1 BM per day) of Gly and 150?g/day (4?×?37.5?g/day) of Glu or 20?g/day (4?×?5?g/day) of Cr monohydrate, 2?g .kg-1 BM per day (4?×?0.5?g .kg-1 BM per day) of Gly (100?g/day (4?×?25?g/day) of Glu and 1000?mg/day (4?×?250?mg/day) of Ala for 7?days for 7?days. Exercise trials were conducted pre- and post-supplementation and involved 40?min of constant-load cycling exercise at 70% O2 max by a self-paced 16.1?km time trial at 30°C and 70% relative humidity.

Results

Median and range values of TBW increased significantly by 2.1 (1.3-3.3) L and 1.8 (0.2-4.6) L in Cr/Gly/Glu and Cr/Gly/Glu/Ala groups respectively (P?=?0.03) and of BM not significantly by 1.8 (0.2-3.0) kg and 1.2 (0.5-2.1) kg in Cr/Gly/Glu and in Cr/Gly/Glu/Ala, respectively (P?=?0.75). During constant load exercise, heart rate (HR) and core temperature (Tcore) were significantly lower post-supplementation: HR was reduced on average by 3.3?±?2.1 beats/min and by 4.8?±?3.3 beats/min (mean ± SD) and Tcore by 0.2?±?0.1 (mean ± SD) in the Cr/Gly/Glu and Cr/Gly/Glu/Ala, respectively The reduction in HR and Tcore was not significantly different between the supplementation groups.

Conclusions

In comparison to the established hyper hydrating Cr/Gly/Glu supplement, supplement containing Cr/Gly/Ala and decreased amount of Glu provides equal improvements in thermoregulatory and cardiovascular responses during exercise in the heat.  相似文献   

19.

Background

The purpose of the present study was to examine the acute effects of a thermogenic nutritional supplement containing caffeine, capsaicin, bioperine, and niacin on muscular strength and endurance performance.

Methods

Twenty recreationally-active men (mean ± SD age = 21.5 ± 1.4 years; stature = 178.2 ± 6.3 cm; mass = 76.5 ± 9.9 kg; VO2 PEAK = 3.05 ± 0.59 L/min-1) volunteered to participate in this randomized, double-blinded, placebo-controlled, cross-over study. All testing took place over a three-week period, with each of the 3 laboratory visits separated by 7 days (± 2 hours). During the initial visit, a graded exercise test was performed on a Lode Corival cycle ergometer (Lode, Groningen, Netherlands) until exhaustion (increase of 25 W every 2 min) to determine the maximum power output (W) at the VO2 PEAK (Parvo Medics TrueOne® 2400 Metabolic Measurement System, Sandy, Utah). In addition, one-repetition maximum (1-RM) strength was assessed using the bench press (BP) and leg press (LP) exercises. During visits 2 and 3, the subjects were asked to consume a capsule containing either the active supplement (200 mg caffeine, 33.34 mg capsaicin, 5 mg bioperine, and 20 mg niacin) or the placebo (175 mg of calcium carbonate, 160 mg of microcrystalline cellulose, 5 mg of stearic acid, and 5 mg of magnesium stearate in an identical capsule) 30 min prior to the testing. Testing included a time-to-exhaustion (TTE) ride on a cycle ergometer at 80% of the previously-determined power output at VO2 PEAK followed by 1-RM LP and BP tests.

Results

There were no differences (p > 0.05) between the active and placebo trials for BP, LP, or TTE. However, for the BP and LP scores, the baseline values (visit 1) were less than the values recorded during visits 2 and 3 (p ≤ 0.05).

Conclusion

Our findings indicated that the active supplement containing caffeine, capsaicin, bioperine, and niacin did not alter muscular strength or cycling endurance when compared to a placebo trial. The lack of increases in BP and LP strength and cycle ergometry endurance elicited by this supplement may have been related to the relatively small dose of caffeine, the high intensity of exercise, the untrained status of the participants, and/or the potential for caffeine and capsaicin to increase carbohydrate oxidation.  相似文献   

20.

Background

Research has shown micronutrient deficiency to be scientifically linked to a higher risk of overweight/obesity and other dangerous and debilitating diseases. With more than two-thirds of the U.S. population overweight or obese, and research showing that one-third are on a diet at any given time, a need existed to determine whether current popular diet plans could protect followers from micronutrient deficiency by providing the minimum levels of 27 micronutrients, as determined by the U.S. Food and Drug Administrations (FDA) Reference Daily Intake (RDI) guidelines.

Methods

Suggested daily menus from four popular diet plans (Atkins for Life diet, The South Beach Diet, the DASH diet, the DASH diet) were evaluated. Calorie and micronutrient content of each ingredient, in each meal, were determined by using food composition data from the U.S. Department of Agriculture Nutrient Database for Standard Reference. The results were evaluated for sufficiency and total calories and deficient micronutrients were identified. The diet plans that did not meet 100% sufficiency by RDI guidelines for each of the 27 micronutrients were re-analyzed; (1) to identify a micronutrient sufficient calorie intake for all 27 micronutrients, and (2) to identify a second micronutrient sufficient calorie intake when consistently low or nonexistent micronutrients were removed from the sufficiency requirement.

Results

Analysis determined that each of the four popular diet plans failed to provide minimum RDI sufficiency for all 27 micronutrients analyzed. The four diet plans, on average, were found to be RDI sufficient in (11.75 ± 2.02; mean ± SEM) of the analyzed 27 micronutrients and contain (1748.25 ± 209.57) kcal. Further analysis of the four diets found that an average calorie intake of (27,575 ± 4660.72) would be required to achieve sufficiency in all 27 micronutrients. Six micronutrients (vitamin B7, vitamin D, vitamin E, chromium, iodine and molybdenum) were identified as consistently low or nonexistent in all four diet plans. These six micronutrients were removed from the sufficiency requirement and additional analysis of the four diets was conducted. It was determined that an average calorie content of (3,475 ± 543.81) would be required to reach 100% sufficiency in the remaining 21 micronutrients.

Conclusion

These findings are significant and indicate that an individual following a popular diet plan as suggested, with food alone, has a high likelihood of becoming micronutrient deficient; a state shown to be scientifically linked to an increased risk for many dangerous and debilitating health conditions and diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号