首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
本文采用磁控溅射加后续硒化的方法制备柔性CZTSSe薄膜, 通过向硒化气氛中引入钾元素实现了钾的有效掺杂。研究了钾掺杂量对柔性CZTSSe薄膜和电池性能的影响。X射线衍射和Raman结果表明适量掺入钾元素可以显著提高CZTSSe薄膜的 (112) 择优取向, 增大晶粒尺寸, 但钾元素掺杂量过高时又会使晶粒尺寸变小降低薄膜结晶性。另外钾元素的掺入也会改变CZTSSe/Cd S间能带匹配情况, 少量的钾元素掺杂对CZTSSe/Cd S间导带失调值 (CBO) 影响不大, 过量掺入钾元素则会明显增大CZTSSe/Cd S间的CBO绝对值, 进而降低柔性CZTSSe太阳电池转换效率。发现钾元素掺杂量为1. 0μmol时, 所制备的柔性CZTSSe薄膜平均晶粒尺寸超过1μm, 且具有很强的 (112) 择优取向;制作的CZTSSe/Cd S具有最佳的CBO数值, 相应柔性太阳电池的最高值转换效率为3. 06%。  相似文献   

2.
近些年,人们越来越关注太阳辐射的光伏利用。光伏发电技术在迅猛发展,薄膜太阳电池从占有主导地位的硅晶片技术中抢占了一定的市场份额。其中铜锌锡硫薄膜太阳电池因具有低成本、高的光电转化效率和吸收系数、合适的禁带宽度和环境友好等优点成为近年来薄膜太阳电池研究的热点。本文阐述了铜锌锡硫薄膜太阳电池的器件结构和性能特点,介绍了铜锌锡硫薄膜太阳电池的制备方法和研究进展,并对今后主要的发展方向进行了展望。  相似文献   

3.
本文以油胺为溶剂,采用液相法制备了Cu2ZnSnS4(CZTS)纳米颗粒,通过CZTS纳米浆滴涂法制备了CZTS薄膜,而后经固态硒源硒化工艺得到了CZTSSe薄膜,研究了制备工艺条件反应温度、气压、物质配比及退火温度等对样品的晶体结构及成分的影响。采用X射线衍射仪(XRD)、热重-差示扫描量热法(TG-DSC)、能谱分析(EDAX)对制备的CZTS粉末和CZTSSe薄膜样品进行了表征,结果表明在化学计量比和保压的条件下可得到单相性较好的前驱体粉末,由此得到的CZTSSe薄膜在500℃的硒化退火温度下能够形成具有单一锌黄锡矿结构、结晶程度较好的薄膜;由EDAX的成分分析结果可知,薄膜具有贫铜的成分,而且,随着温度的升高,Se元素含量增加最后趋于平稳,而S元素含量先减少后有增加趋势。  相似文献   

4.
宋慧瑾  鄢强  朱晓东 《材料导报》2012,26(9):138-141
综述了近年来柔性薄膜太阳电池的发展状况,结合柔性薄膜太阳电池的发展历史,分析了用作柔性衬底薄膜太阳电池的研究成果,探讨了各种器件结构的优缺点,并介绍了柔性衬底材料的选择及柔性太阳电池的研究进展。  相似文献   

5.
在柔性PET-ITO衬底上制备了结构为ITO/CuPc/CuPc:C60/C60/Al的柔性薄膜太阳电池.结果发现,共混层的嵌入,可增大给体/受体界面,提高激子扩散效率,从而提高器件光电转换效率.当共混层CuPc与C60>的摩尔比为1 : 2时,光吸收效率较高,且共混层颗粒均匀分散,光电转换效率达0.63%.  相似文献   

6.
刘仪柯  唐雅琴  蒋良兴  刘芳洋  秦勤  张坤 《材料导报》2018,32(9):1412-1416, 1422
采用溅射工艺制备Cu-Zn-Sn金属预制层并尝试在多种退火方案(硫化退火、硒化退火、不同温度下硫化后硒化)下对其进行退火处理,探索出一种只需采用金属预制层即可完成CZTSSe制备的退火工艺制度。通过扫描电镜对比研究了不同退火制度下Cu_2ZnSn(S_xSe_(1-x))_4薄膜的形貌差异,发现低温硫化后硒化工艺可以有效减少因硫化温度过高引起的薄膜中孔洞较多的问题,有利于薄膜的平整与致密化。在此基础上,采用X射线荧光光谱、扫描电镜、X射线衍射及拉曼光谱对不同硫化温度(200℃、300℃、400℃、500℃)下硫化后硒化工艺制备的Cu_2ZnSn(S_xSe_(1-x))_4薄膜的成分、形貌、物相结构及结晶性能进行了表征和分析。结果表明,300℃下硫化后硒化获得的Cu_2ZnSn(S_xSe_(1-x))_4较其他温度下硫化后硒化获得的产物有着更好的形貌及结晶性能,其器件的光电转换效率为2.09%,远高于500℃下硫化后硒化工艺所得薄膜器件的效率(0.94%)。  相似文献   

7.
采用不同ZnS溅射功率,在钠钙玻璃(SLG)衬底上依次溅射Mo、ZnS、SnS及Cu,退火后制备出Cu_2ZnSnS_4(CZTS)薄膜。研究了溅射功率(50~140W)对ZnS薄膜和CZTS薄膜的微观形貌、微结构以及附着性的影响。结果表明,不同功率溅射的ZnS薄膜为(008)择优取向的纤锌矿六方晶系结构;功率较低时,ZnS薄膜结晶质量较差;随着功率从50W增加到140W,ZnS薄膜内的压应力增加了一个数量级;ZnS溅射功率低于80W或高于110W时,退火后的CZTS薄膜发生龟裂甚至脱落;ZnS溅射功率在80~110W时,退火后CZTS薄膜表面均匀平整;110W溅射后的CZTS薄膜出现较多的孔洞和二次相。采用80W功率溅射ZnS薄膜制备的CZTS/CdS太阳电池,开路电压达到572mV,短路电流密度为14.23mA/cm~2,光电转换效率为3.34%。  相似文献   

8.
按照ZnS/CuS/SnS/CuS的顺序分层溅射硫化锌、硫化铜和硫化亚锡三个二元硫化物靶,制备铜锌锡硫(CZTS)的预制层。在预制层总厚度不变的情况下按照上述顺序将预制层分多个周期溅射,然后在360℃对含硫预制层进行低温退火,再在硫气氛中进行高温(600℃)硫化处理,制备出CZTS薄膜。周期数为3的CZTS薄膜表面平整致密、晶粒大小均匀,禁带宽度为1.50eV。用这种薄膜制备的CZTS薄膜太阳电池性能最好,其开路电压(Voc)为623mV,短路电流密度(Jsc)为11.79mA/cm^2,光电转换效率达到2.93%。  相似文献   

9.
采用固态硫化法硫化铜锡锌(CZT)预制膜制备铜锌锡硫(Cu_2ZnSnS_4,CZTS)薄膜,研究硫化时间对CZTS薄膜性能的影响。利用X射线衍射仪(XRD)和紫外拉曼光谱仪(Raman)分析薄膜的物相结构,通过X射线能谱仪(EDS)分析薄膜的化学组分,采用扫描电镜(SEM)观察薄膜的表面形貌,利用UV-Vis研究薄膜的光学特性。结果表明:随着硫化时间延长,Cu含量增加,Zn含量明显减少。硫化40min以上制备的薄膜出现导致禁带宽度减小的杂相SnS,Sn2S3和Cu_2SnS_3。当硫化时间为20min时,样品为单相的CZTS薄膜,薄膜表面均匀平整,化学组分贫Cu富Sn,吸收系数达104cm-1,禁带宽度Eg约为1.56eV。  相似文献   

10.
Zn(O,S)薄膜由于低成本和生态友好的特性而被广泛用作锌黄锡矿薄膜太阳能电池的无镉缓冲层.但是Zn(O,S)缓冲层的载流子浓度和电导率较低,这将会导致器件性能的降低.在这项工作中,我们引入了一层额外的In2S3缓冲层,并通过后退火处理来改进Zn(O,S)层以及CZTSSe层的属性.经过退火处理后,我们发现Zn(O,S...  相似文献   

11.
本文利用射频磁控溅射薄膜沉积技术在柔性聚酰亚胺(PI)、氧化铟锡(ITO)玻璃及石英玻璃衬底上制备了透明硫化锌(ZnS)薄膜。通过改变生长过程中的衬底温度,全面系统地研究了衬底温度对柔性和刚性ZnS薄膜的晶体结构、光透过率、光学常数以及表面性能影响的规律。研究表明升高衬底温度有利于形成ZnS薄膜(111)晶面的择优取向生长。不同衬底温度条件下制备的柔性和刚性ZnS薄膜在可见光波长范围内的平均光透过率均大于80%;在红外波长范围的平均光透过率达到85%。柔性ZnS薄膜在400 nm-890 nm波长范围内的光学折射率为2.21-2.56。刚性ZnS薄膜的光学折射率随着衬底温度的升高有所增加,当衬底温度为300℃时,刚性ZnS薄膜在890 nm波长处的折射率达到2.26。柔性ZnS薄膜厚度及表面粗糙度均随着衬底温度的升高而降低,当衬底温度为300℃时,柔性ZnS薄膜表面均方根粗糙度达到最小值2.99 nm。为实现高性能柔性ZnS光电器件,应控制生长柔性ZnS薄膜的衬底温度在200℃-300℃,以获得最优化的器件性能。  相似文献   

12.
采用预制膜硫化法制备铜锌锡硫(CZTS)薄膜,分别在350,400,450,500,550℃进行硫化,研究了硫化温度对薄膜特性的影响。结果表明:硫化温度低于400℃时硫化反应基本上不发生,主要发生Cu6Sn5和Cu5Zn8两相中元素相互扩散的合金化过程,只有少量硫化物Sn3S4和ZnS生成;硫化温度为450℃时,合金相消失,硫化后的薄膜同时含有CZTS和SnS;硫化温度为500℃时薄膜的主要组成相为CZTS,其晶粒尺寸达2μm,但表面粗糙;硫化温度为550℃薄膜中CZTS晶粒尺寸约为2μm,表面平整。  相似文献   

13.
通过不同液相前驱体合成了Cu_2ZnSn(SSe)_4(CZTSSe)薄膜,采用XRD、SEM等手段进行表征,结果表明,前驱体中Zn源的活性直接影响到最终生成CZTSSe晶体材料的性能;通过肼、S粉和Zn粉提供的Zn源不容易形成晶核,发生反应所需反应温度较高,但是容易形成大的晶型,制备的CZTSSe晶体能量转化率为6.21%;而通过干冰、N_2H_4和Zn粉提供的Zn源容易形成晶核,但其后续晶体长大的反应进行比较困难,不容易形成大的晶型,制备的CZTSSe晶体能量转化率只有5.50%。揭示了不同Zn前驱体对CZTSSe薄膜结构、晶体尺寸以及转化率的影响,并对机理进行了初步探讨。  相似文献   

14.
用真空共蒸发法制备了CuxTe薄膜并将其运用于CdTe太阳电池中.对薄膜进行了X射线衍射(XRD)分析,比较了有、无CuxTe插层的CdTe太阳电池的暗态,I-V特性和C-V特性.结果表明,刚沉积的薄膜非晶结构占主导地位,只有部分Cu/Te配比较低的薄膜出现多晶结构.CuxTe插层的引入有利于消除roll over(暗态I-V曲线饱和)现象,使电池的二极管理想因子和暗饱和电流密度降低,CdTe掺杂浓度增加,有效地改善了CdTe太阳电池的性能.用CuxTe薄膜作为背接触层,获得了效率为12.5%的CDS/CdTe小面积(0.0707cm2)太阳电池.  相似文献   

15.
采用溶胶–凝胶后硒化法制备了铜锌锡硫硒薄膜, 其薄膜表面平整、无裂纹。通过简化铜锌锡硫前驱体溶胶的制备以及后退火时避免使用硫化氢气体(H2S)等方法使铜锌锡硫硒薄膜的制备工艺得到简化。选用低毒有机物乙二醇为溶剂,Cu(CH3COO)2、Zn(CH3COO)2、SnCl2•2H2O和硫脲为原料, 制备铜锌锡硫前驱体溶胶。XRD、Raman、EDX和SEM 分析表明制备的铜锌锡硫硒薄膜为锌黄锡矿结构, 所有薄膜均贫铜富锌, 用0.2 g硒粉、硒化20 min得到的铜锌锡硫硒薄膜其结晶较好, 表面晶粒可达1.0 μm左右。透射光谱分析结果表明, 随硒含量的增加, 铜锌锡硫硒薄膜的光学带隙从1.51 eV减小到1.14 eV。  相似文献   

16.
硫化锡(SnS)具有很高的光吸收系数和合适的禁带宽度,又无毒性,因此在太阳电池等光电器件中具有潜在应用价值。本文用真空蒸发法制备掺杂的SnS薄膜,掺杂源有Sb、Sb:O3、Se、Te、In、In2O3、Se和In2O3的混合物。对各种掺杂SnS薄膜的厚度、电流-电压(Ⅰ—Ⅴ)特性等进行了表征,并计算了其电阻率和光电导与暗电导的比值(Gphoto/Gdark)。结果表明较有效的掺杂源是Sb,Sb掺杂的薄膜电阻率比纯薄膜的电阻率降低四个数量级,Gphoto/Gdark增加约一倍。同时,研究了Sb掺杂量对SnS薄膜电学性能的影响,表明Sb的最佳掺入量约为1.3wt%~1.5wt%。  相似文献   

17.
铜锌锡硫硒(Cu2ZnSn(S,Se)4,简称CZTSSe)薄膜太阳能电池因其组成元素地壳含量丰富,低毒环保等优点被科学家们认为是适合未来大面积发展的一类太阳能电池。当前,该类太阳能电池的效率一直受到吸收层中高的阳离子无序度和器件的低开路电压的限制。为此,科学家们提出“阳离子掺杂措施”,即:通过引入其他阳离子,减少本身的阳离子无序度,从而提高电池器件的光电转换效率。事实也证明,阳离子掺杂措施在提升电池器件性能方面有着重大的意义。基于此,详细阐述了阳离子掺杂措施在优化铜锌锡硫硒电池器件性能方面的研究进展,包括:阳离子(如:钠、钾、锑)的额外添加和阳离子取代(如:锂/银取代铜、锰/镁/钡/镉取代锌、锗取代锡)措施,并得出结论:最有前景的阳离子是镉和锗离子,考虑到镉的有毒性,所以锗应该是优化CZTSSe电池性能方面最有应用前景的一种元素。  相似文献   

18.
采用简单的两电极电化学沉积金属薄膜技术,在镀钼的钠钙玻璃衬底上共沉积Cu-Sn层后,再沉积Zn金属层,制备出Cu-Sn-Zn金属预制层。在不同的温度下进行低温退火后,以硫粉作为硫源高温硫化金属预制层,制备出晶体质量较好的Cu2ZnSnS4(CZTS)薄膜。通过X射线衍射仪(XRD)、扫描电镜(SEM)及能谱仪(EDS)对薄膜的晶体结构、表面形貌和薄膜组分进行分析表征,发现共沉积Cu-Sn层,再沉积Zn金属层得到的CZT预制层表面平整但晶粒尺寸较小,经过退火处理后晶粒尺寸得到改善,且硫化后所得到的CZTS薄膜不易从Mo衬底上脱落,粘附性较强。用其制备的CZTS薄膜太阳电池的开路电压Voc=569mV,短路电流密度Jsc=8.58mA/cm2,光电转换效率为1.40%。  相似文献   

19.
采用脉冲激光沉积技术在真空腔中制备了ZnSe:Co薄膜。研究了沉积压强对等离子体羽辉传播、薄膜表面形貌,微结构以及光学性质的影响。结果表明,随着压强的增大,等离子体羽辉在空间的传播距离减小,薄膜沉积方式由溅射式沉积转变为吸附式沉积,薄膜的结晶质量得到大幅提升。此外,薄膜的光学带隙随压强的增大而减小,低压条件下制备的薄膜具有较大的带隙值,这与量子限域效应有关。当压强增大到10 Pa时,得到了沿(111)方向择优生长且结晶质量优秀的微晶薄膜。  相似文献   

20.
n型层对柔性衬底微晶硅太阳电池特性的影响   总被引:1,自引:0,他引:1  
在不锈钢柔性衬底上采用等离子体化学气相沉积(PECVD)方法制备了不同结构的n型硅薄膜,测试了在其上生长的微晶硅太阳电池的电学输出特性.发现太阳电池的开路电压随n型层的硅烷浓度线形变化,短路电流密度则存在一个最优值,这与n型层引起的本征层中的孵化层和结构演变有关.将优化后的n型层应用于不锈钢柔性衬底的非晶硅/微晶硅叠层...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号