首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 839 毫秒
1.
Micas/polypyrroles (PPys) doped with molybdate, p-toluene sulfonate, dodecyl benzene sulfonate, and 2-naphthalene sulfonate composite pigments were synthesized by chemical oxidative polymerization and characterized in coatings for corrosion protection on cold rolled steel substrate by various electrochemical techniques. Synthesized composite pigments were characterized for morphology by scanning electron microscopy, which indicated physical formation of PPy on the surface of mica. Chemical composition of the composite pigments was analyzed by X-ray photoelectron spectroscopy which chemically confirmed doped PPy formation on the mica surface. Coatings were formulated at 20% pigment volume concentration (composite pigments or as-received mica pigment) and were applied on cold rolled steel substrate. Coatings were exposed to salt spray test conditions (ASTM B117) for 30 days and were periodically assessed for corrosion with electrochemical impedance spectroscopy (EIS), open circuit potential (OCP), and potentiodynamic polarization. EIS and circuit modeling results demonstrated higher coating resistance (R c) for mica/PPy (doped) composite coatings as compared to as-received mica pigment containing coating after 30 days of salt spray exposure. Lower current density and more positive corrosion potential values were observed for mica/PPy (doped) composite coatings as compared to mica pigment-based coating in potentiodynamic polarization measurements, indicating improved corrosion protection for cold rolled steel substrate. OCP measurements revealed more positive values for mica/PPy (doped) composite coatings as compared to mica pigment-based coating suggesting superior corrosion protection for mica/PPy (doped) composites.  相似文献   

2.
The corrosion behavior of mild steel and mild steel covered by electrochemically deposited (a) polyaniline (PANI) film, (b) epoxy coating and (c) PANI/epoxy coating system in 0.1 M sulfuric acid solution were investigated by electrochemical impedance spectroscopy (EIS). Electrochemical deposition of PANI film was performed from aqueous solution of 0.5 M sodium benzoate and 0.1 M aniline at constant current density of 1.5 mA cm−2. Epoxy coatings on mild steel and mild steel modified by PANI film were deposited at constant voltage. It was shown that thin PANI film had provided good corrosion protection of mild steel in 0.1 M sulfuric acid solution, and could be used for modification of mild steel prior to epoxy coating deposition. The increased corrosion protection of mild steel by PANI/epoxy coating system in the same solution was obtained.  相似文献   

3.
The corrosion behavior of an epoxy primer containing aluminum powder (10 vol.%) applied on carbon steel and on galvanized steel was examined by electrochemical impedance spectroscopy (EIS). The data show that this coating is more protective when applied onto carbon steel substrates, and that on galvanized steel thicker coatings allow to achieve similar protection levels as those obtained for carbon steel. These effects are probably due to aluminum pigments providing a cathodic protection of the substrate, and to the resulting products precipitating inside the pores of the polymeric coating. Three stages can be distinguished during exposure of the coated specimens. Upon immersion of the coated samples in the test solution, a pre-saturated stage is observed. After a certain period of immersion, which strongly depends on the thickness of the applied coating, a saturation stage is reached in which an effective protection of the metallic substrate against corrosion is achieved. Finally, at sufficiently long exposure times, swelling through the coating eventually leads to the detachment of the coating.  相似文献   

4.
Organic coating approaches for corrosion protection with inherently conducting polymers have become important because of restriction on the use of heavy metals and chromates in coatings due to their environmental problems. The present work is directed towards the synthesis of polyaniline (PANI) and polyaniline–SiO2 composites (PSCs) by chemical oxidation polymerization in the presence of phosphoric acid and evaluation of synthesized PANI and PSCs for protection of mild steel from corrosion in a strong aggressive medium (i.e. 1.0 mol L–1 HCl). A suitable coating with PSC was formed on mild steel using epoxy resin by the powder coating technique. A comparative study of the corrosion protection efficiency of mild steel coated with PANI and PSC in 1.0 mol L–1 HCl solution was evaluated using the Tafel extrapolation, chrono‐amperometry and weight loss methods. The PSC coating showed that a significant reduction in the corrosion current density reflects the better protection of mild steel in an acidic environment. Higher protection efficiency up to 99% was achieved by using PSC‐coated mild steel at 6.0 wt% loading of PSC in epoxy resin. The coating performance and corrosion rate of mild steel were investigated by using immersion of polymer‐coated mild steel in 1.0 mol L–1 HCl for 60 days and indicated that PSC‐coated mild steel showed better performance from corrosion than PANI in an acidic medium.© 2012 Society of Chemical Industry  相似文献   

5.
In this work, the corrosion protection of 316L steel was promoted by an electro-synthesized polymer obtained from the technical cashew nutshell liquid (t-CNSL). Spectroscopic techniques confirmed the polymer formation. The polymer was dispersed in the ethyl acetate solvent and used to form coatings on 316L steel substrates. The coated samples were subjected to electrochemical tests in a saline environment. The coated electrode with poly(t-CNSL) polymer was exposed to the corrosive medium for 24 days, and superior corrosion protection was observed compared with the uncoated sample. The open circuit potential measurements showed that the coated sample possessed a more positive corrosion potential when compared with the uncoated substrate. The electrochemical impedance spectroscopy results indicated that the coated electrode's polarization resistance (Rp) recorded ~1.0 MΩ cm2 after 24 days of exposure. A decrease in polarization resistance was observed with the exposure time due to the presence of micropores in the t-CNSL coating. The polarization curves exhibited that the coated electrode with poly(t-CNSL) has lower corrosion current density and less negative corrosion potential than the uncoated steel electrode. Therefore, t-CNSL favors the manufacture of thin poly(t-CNSL) coatings for corrosion protection purposes besides being a low-cost material.  相似文献   

6.
The corrosion resistance of phosphate coating obtained by anodic electrochemical treatment at 4–6 mA/cm2 is addressed in this paper. The corrosion performance of these coatings is also compared with the coatings obtained by chemical treatment. The regenerated phosphoric acid under the influence of anodic current causes a large variation in morphological features of the coatings. Immersion and salt spray tests indicate the ability of these coatings to act as a barrier film on mild steel. Polarization and electrochemical impedance spectroscopic (EIS) studies indicate that the corrosion resistance of phosphate coatings obtained by anodic treatment decreases with increase in current density employed for deposition. In spite of their higher coating weight, the corrosion resistance of phosphate coatings obtained by anodic treatment is inferior to those obtained by chemical treatment. The porosity or discontinuities created due to the dissolution of the coating under the influence of anodic current are considered responsible for the inferior corrosion resistance of these coatings. The study concludes that anodic treatment has only a limited scope for preparing phosphate coatings with improved corrosion resistance.  相似文献   

7.
Corrosion protection of steel by glass flake (GF) containing coatings is widely used in marine atmosphere. Even though, the coatings containing glass flake are highly corrosion resistant, their performance is decreased due to the presence of pinholes and coating defects. It is well established that polyaniline containing coating is able to protect the pinhole defects in the coatings due to passivating ability of polyaniline. Hence a study has been made on the corrosion protection ability of steel using polyaniline-glass flake composite containing coating with 10% loading of glass flake in epoxy binder. The polyaniline glass flake composite (PGFC) was synthesized by chemical oxidation of aniline by ammonium persulphate in presence of glass flake. The corrosion protection ability of GF and PGFC containing coating on steel was found out by salt spray test and EIS test in 3% NaCl. In both the tests, the resistance value of the PGFC containing coating has remained at 108-109 Ω cm2 where as for the GF containing coating, the resistance values decreased to 105 Ω cm2. The enhanced corrosion protection ability of the PGFC containing coating is due to the passivation ability of the polyaniline present in the coating.  相似文献   

8.
Corrosion resistant coatings are a promising solution to protect structural metals in harsh environments. Ceramic composite coatings made from polymer-derived ceramics are highly attractive due to the ease of their processing and the ability to work in various environments. This paper is focused on the performance of a TiSi2-filled SiOC ceramic composite coating system on 316 stainless steel (SS) substrates as a corrosion resistant coating. The best-performing quadruple-dip coatings were shown to be able to reduce the weight loss due to hot sulfuric acid (95+%, 104–107 °C) corrosion by 85% over a 30-day period. Coatings from the same system were also examined under 800 °C static (100 h) and cyclic (10 cycles) oxidation. Our results indicate that the coatings perform well under both conditions of prolonged high temperature oxidation and thermal cycling, suggesting the strong potential of this system as an environmental barrier coating (EBC).  相似文献   

9.
A soluble copolymer from aniline and o-toluidine [poly(aniline-co-o-toluidine)] was synthesized by chemical oxidative copolymerization using ammonium persulphate as an oxidant in hydrochloride aqueous medium. The resultant copolymer was characterized by Fourier Transform Infrared (FTIR) spectroscopy and chemically deposited on mild steel specimens using N-methyl-2-pyrrolidone (NMP) as solvent via solution evaporation method. The anticorrosive properties of copolymer coating was investigated in major corrosive environments, such as 0.1 M HCl, 5% NaCl solution, artificial seawater, distilled water and open atmosphere by conducting various corrosion tests which include: immersion test, open circuit potential (OCP) measurements, potentiodynamic polarization measurements and atmospheric exposure test. The corrosion performance of copolymer coating was also compared separately with polyaniline (PANi) and poly(o-toluidine) (POT) homopolymer coatings. The surface morphologies of polymer coatings were evaluated using scanning electron microscopy (SEM). The synthesized copolymer exhibited excellent protection against mild steel corrosion; the protection efficiency being in the range of 78–94% after 30 days of immersion. The corrosion performance of copolymer in 5% NaCl and artificial seawater was comparable, which was only marginally better than in 0.1 M HCl. In general, the performance of copolymer coating was found to be better than that of homopolymer coatings.  相似文献   

10.
This study describes an oxidation and corrosion resistant environmental barrier coating (EBC) applied to an AISI 441 stainless steel substrate. For this purpose, four polymer-derived ceramic (PDC) coating systems were developed. These coating systems consisted of a bond coat applied by dip coating, and a top-coat that was loaded with passive fillers and deposited by spray coating. The microstructures of the coatings were investigated using optical microscopy and scanning electron microscopy, including energy dispersive spectroscopy (EDS). X-ray powder diffraction (XRD) was used to investigate the phase composition of the coatings. The optimized composite top coatings were prepared from the preceramic polymer HTT1800, filled with yttria-stabilized zirconia and a specially tailored Al2O3–Y2O3–ZrO2 (AYZ) passive filler, and commercial barium silicate glasses were used as sealing agents. After thermal treatment in air at 750°C, uniform and crack-free composite coatings on stainless steel substrates were developed, with thicknesses of up to 93 μm. Oxidation tests, which were performed at 850°C in synthetic air, showed that every tested coating system remained undamaged by oxidation and showed good bonding to the metal substrate.  相似文献   

11.
The corrosion‐protection aspects of poly(o‐anisidine) (POA) coatings on mild steel in aqueous 3% NaCl solutions were investigated with electrochemical impedance spectroscopy, a potentiodynamic polarization technique, and open circuit potential measurements. The POA coatings were electrochemically synthesized on mild steel with cyclic voltammetry from an aqueous salicylate medium. The corrosion behavior of the POA coatings was investigated through immersion tests performed in aqueous 3% NaCl solutions, and the recorded electrochemical impedance spectra were fitted with an equivalent circuit to obtain the characteristic impedance parameters. The use of a single equivalent circuit was inadequate to explain the various physical and electrochemical processes occurring at different exposure times. It was suggested that some characteristic element(s) should be incorporated into the equivalent circuit at different stages of the immersion to elucidate the various processes occurring at different exposure times. The evolution of the impedance parameters with the immersion time was studied, and the results showed that POA acted as a protective coating on the mild steel against corrosion in a 3% NaCl solution. From these data, the water uptake and delamination area were determined to further support the corrosion‐protection performance of the POA coating. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

12.
A nano-composite coating was formed by dispersing nano-Al2O3 as pigments in different concentrations, to a specially developed alkyd based waterborne coating. The nano-Al2O3 based composite coatings were applied on mild steel substrate by dipping. The dispersion of particles in coating system was investigated by using SEM and AFM techniques. The effect of addition of these nano-pigments on the electrochemical behavior of the coating was investigated in 3.5% NaCl solution, using electrochemical impedance spectroscopy (EIS). It was found that coating modified with higher concentration of nano-Al2O3 particles showed comparatively better performance as it was evident from pore resistance (Rp) and coating capacitance (Cc) values after 30 days of exposure. In general, the study showed an improvement in the corrosion resistance of the nano-particle modified coatings as compared to the neat coating, confirming the positive effect of nano-particle addition in coatings.  相似文献   

13.
不同材料表面镍-磷-锌盐纳米复合化学镀层性质的比较   总被引:2,自引:0,他引:2  
研究比较了D310硅钢片和A3钢片表面Ni-P-Zn3(PO4)2,Ni-P-ZnSnO3和Ni-P-ZnSiO3纳米复合化学镀层的外貌和性质。用扫描电子显微镜(SEM)观察外貌:称重法测定厚度,通过10%NaCl溶液,1%H2S气体加速腐蚀试验,10%,CuSO4溶液点滴试验,饱和KCl溶液循环伏安(CV)试验,抗粘性试验及抗高温氧化试验等多种手段测定其性能。结果表明:纳米复合化学镀层的性能优于镍-磷镀层和其它微米复合镀层。  相似文献   

14.
Nano-composite coatings were formed by incorporating 3 wt% nano-ZnO in a polyurethane-based waterborne coating. The nano-ZnO based composite coatings were applied on standard phosphated steel panels by cathodic electrodeposition. The electrodeposited nano-composite coatings were then baked for 20 min at 165 °C. To investigate the corrosion resistance of the coatings, the coated panels were immersed in 3.5 wt% NaCl solutions for 2880 h (120 days). The improvement in corrosion performance of the composite coatings was evaluated using electrochemical impedance spectroscopy technique. It was found that the films containing nano-sized ZnO particles show a corrosion resistance of 2 orders of magnitude higher than that of the neat films.  相似文献   

15.
The laser pyrolysis of a ceramic coating system composed of an organosilazane (Durazane 1800) with monoclinic ZrO2 and glass particles as fillers was investigated. The samples were produced by spray coating on pre-treated stainless steel substrates and subsequently pyrolyzed by Nd:YV04 laser radiation (λ =1064 nm). The interaction of laser radiation with the polysilazane-based glass/ZrO2 coating system led to formation of semi-crystalline dense coatings with a thickness up to 20 μm in a short time.Laser pyrolyzed ceramic coatings were characterized and compared with furnace pyrolyzed coatings. The microstructure of the coatings was investigated by scanning electron microscopy (SEM). Additionally the corrosion resistance and mechanical properties, such as hardness, adhesive strength and the tribological behaviour have been investigated. Ceramic coatings generated by laser pyrolysis showing promising mechanical properties, a super-hydrophobic surface as well as a high corrosion resistance.  相似文献   

16.
In this study, electrochemical investigations of corrosion protection and the electrochromic properties of an aniline-pentamer-based electroactive polyimide (AP-based EPI) coating prepared by oxidative coupling polymerization are presented. The in situ chemical oxidation of the reduced form of soluble, electroactive poly(amic acid) (EPAA) in N-methyl-2-pyrrolidone (NMP) was monitored by UV–Vis absorption spectra. Moreover, the electroactivity of the AP-based EPI was evaluated by performing electrochemical CV studies. Based on a series of electrochemical measurements in 3.5 wt% NaCl electrolyte, the AP-based EPI coating was found to exhibit enhanced corrosion protection effects on cold-rolled steel (CRS) electrodes as compared to the corresponding non-electroactive (NEPI) coating. A possible mechanism for the enhanced corrosion protection of EPI coatings on the CRS electrode has been proposed as follows: (1) EPI coatings may act as a physical barrier and (2) the redox catalytic properties of the aniline pentamer units in EPI may induce the formation of a passive metal oxide layer on the CRS electrode, as evidenced by SEM and ESCA studies. The electrochromic performance of EPI was investigated by measuring electrochromic photographs and UV absorption spectra.  相似文献   

17.
Corrosion protection of steel by polyaniline blended coating   总被引:4,自引:0,他引:4  
Phosphate doped polyaniline was synthesized from aqueous phosphoric acid containing aniline by chemical oxidation method using ammonium persulphate as oxidant. The polymer was characterized by UV–vis and FT-IR spectroscopic techniques. Using this polymer, a paint with 1% polyaniline was prepared with epoxy binder. The corrosion resistant property of the polymer containing coating on steel was found out by open circuit potential measurements and electrochemical impedance spectroscopic method in 0.1 N HCl, 0.1 N H3PO4 and 3% NaCl for a duration of 50 days. The coating was able to protect the steel more in 0.1 N H3PO4 and 3% NaCl media than in 0.1 N HCl.  相似文献   

18.
Polyaniline (PANI) was synthesized by reaction in an aqueous solution of ammonium peroxodisulfate and phosphoric acid. PANI was characterized by means of scanning electron microscopy and its physical–chemical properties were determined. Simultaneously with the synthesized PANI epoxy-ester coatings containing 3, 5, 10, 15, 20 and 24 vol.% of PANI as a corrosion inhibitor were formulated. The coatings were tested for their mechanical properties, film hardness and corrosion resistance. The testing of the anticorrosion efficiency of PANI as corrosion inhibitor was based on accelerated corrosion tests: in condensed water, NaCl mist, and condensing water and SO2. The prepared PANI displayed inhibition effects in corrosion reactions progressing on a steel base under the organic coating. The synthesized PANI provides good anticorrosion efficiency in an epoxy-ester coating. The studied system does not contain any heavy metals harmful to the environment.  相似文献   

19.
Electrochemical impedance spectroscopy (EIS) is used to derive an expression for predicting the service life of organic coating in a C4-type environment (industrial and costal areas with moderate salinity) as defined in ISO 12944 standard for paints and varnishes—corrosion protection of steel structures by protective paint systems. Three coating systems with a record of 2, 5, and 10 years of durability were selected for the study. The selection was also based on proven composition and dry film thickness (DFT) of the coatings as per ISO 12944. Electrochemical impedance measurements of the paint-coated panels were carried out by exposing the coated mild steel panels without scribe in different corrosive environments such as immersion in NaCl solution, neutral salt spray, etc. Neutral salt spray exposure was found to be the most severe corrosive environment among all the three coating systems. In most of the cases, EIS gave early indication of coating failure when compared to visual defects such as blistering and over-film corrosion.  相似文献   

20.
Conducting polyaniline (Pani) was prepared in the presence of methane sulfonic acid (MeSA) as dopant by chemical oxidative polymerization. The Pani-MeSA polymer was characterized by FT-IR, UV-vis, X-ray diffraction (XRD) and impedance spectroscopy. The polymer was dispersed in polyvinylacetate and coated on carbon steel samples by a dipping method. The electrochemical behavior and anticorrosion properties of the coating on carbon steel in 3% NaCl were investigated using open-circuit potential (OCP) versus time of exposure, and electrochemical techniques including electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and cyclic voltammetry (CV). During initial exposure, the OCP dropped about 0.35 V and the interfacial resistance increased several times, indicating a certain reduction of the polymer and oxidation of the steel surface. Later the OCP shifted to the noble direction and remained at a stable value during the exposure up to 60 days. The EIS monitoring also revealed the initial change and later stabilization of the coating. The stable high OCP and low coating impedance suggest that the conducting polymer maintains its oxidative state and provides corrosion protection for carbon steel throughout the investigated period. The polarization curves and CV show that the conducting polymer coating induces a passive-like behavior and greatly reduces the corrosion of carbon steel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号