首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports the texturing behavior of β-sialon by strong magnetic field alignment (SMFA) during slip casting, followed by reaction pressureless sintering, using either α or β-Si3N4, Al2O3, and AlN as the starting materials. It is found that the β-Si3N4 crystal exhibits a substantially stronger orientation ability than the α-Si3N4 crystal regardless of the Si3N4 raw powders in the magnetic field of 12 T. The β-raw powder produces a highly a , b -axis-oriented β-Si3N4 green body with a Lotgering orientation factor of up to 0.97. During sintering, the β-raw powder allows the a , b -axis-oriented β-sialon to retain the Lotgering orientation factor similar to and even higher than that of β-Si3N4 in the green body. In contrast, the α-raw powder leads to a faster transformation rate of α/β-Si3N4 to β-sialon but a substantially lower texture in β-sialon. The results indicate that the use of the β-raw powder is more efficient for producing highly textured β-sialon via SMFA than that of the α-raw powder as well as the prolonged sintering.  相似文献   

2.
The microstructure of a pressureless sintered (1605°C, 90 min) O'+β' SiAlON ceramic with CeO2 doping has been investigated. It is duplex in nature, consisting of very large, slablike elongated O' grains (20–30 μm long), and a continuous matrix of small rodlike β' grains (< 1.0 μm in length). Many α-Si3N4 inclusions (0.1–0.5 μm in size) were found in the large O' grains. CeO2-doping and its high doping level as well as the high Al2O3 concentration were thought to be the main reasons for accelerating the reaction between the α-Si3N4 and the Si-Al-O-N liquid to precipitate O'–SiAlON. This caused the supergrowth of O' grains. The rapid growth of O' crystals isolated the remnant α–Si3N4 from the reacting liquid, resulting in a delay in the α→β-Si3N4 transformation. The large O' grains and the α-Si3N4 inclusions have a pronounced effect on the strength degradation of O'+β' ceramics.  相似文献   

3.
Gas-pressure sintering of α-Si3N4 was carried out at 1850 ° to 2000°C in 980-kPa N2. The diameters and aspect ratios of hexagonal grains in the sintered materials were measured on polished and etched surfaces. The materials have a bimodal distribution of grain diameters. The average aspect ratio in the materials from α-Si3N4 powder was similar to that in the materials from β-Si3N4 powder. The aspect ratio of large and elongated grains was larger than that of the average for all grains. The development of elongated grains was related to the formation of large nuclei during the α-to-β phase transformation. The fracture toughness of gaspressure-sintered materials was not related to the α content in the starting powder or the aspect ratio of the grains, but to the diameter of the large grains. Crack bridging was the main toughening mechanism in gas-pressure-sintered Si3N4 ceramics.  相似文献   

4.
The microstructure, crystal structure, and chemical composition of reaction-sintered Si3N4 containing iron were studied using conventional and scanning transmission electron microscopy. It was found that the grains of β -Si3N4 were large and blocklike with well-developed facets, a series of voids along some grain boundaries, a subgrain of iron silicide near the periphery, and penetration of iron silicide into the three-grain junctions and grain boundaries. At some distance from each β -Si3N4 grain was a region of small α-Si3N4 grains, with no evidence of iron silicide. Between this region and the β -Si3N4 grain was a zone containing both α- and β -Si3N4 and iron silicide. These observations suggest that the large β -Si3N4 grains grow in liquid iron silicide, that the smaller α-Si3N4 grains grow from the vapor, and that the latter are converted to the β form by solution in, and reprecipitation from, liquid iron silicide.  相似文献   

5.
α-Si3N4 core structures within β-Si3N4 grains have been studied by transmission electron microscopy. The grains were dispersed in an oxynitride glass which was previously melted at 1600°C. The cores were topotactically related to the as-grown β-Si3N4 crystallites and are related to epitactical nucleation during heat treatment as the most probable mechanism.  相似文献   

6.
The influence of phase formation on the dielectric properties of silicon nitride (Si3N4) ceramics, which were produced by pressureless sintering with additives in MgO–Al2O3–SiO2 system, was investigated. It seems that the difference in the dielectric properties of Si3N4 ceramics sintered at different temperatures was mainly due to the difference of the relative content of α-Si3N4, β-Si3N4, and the intermediate product (Si2N2O) in the samples. Compared with α-Si3N4 and Si2N2O, β-Si3N4 is believed to be a major factor influencing the dielectric constant. The high-dielectric constant of β-Si3N4 could be attributed to the ionic relaxation polarization.  相似文献   

7.
Porous silicon nitride (Si3N4) ceramics with about 50% porosity were fabricated by pressureless sintering of α-Si3N4 powder with 5 wt% sintering additive. Four types of sintering aids were chosen to study their effect on the microstructure and mechanical properties of porous Si3N4 ceramics. XRD analysis proved the complete formation of a single β-Si3N4 phase. Microstructural evolution and mechanical properties were dependent mostly on the type of sintering additive. SEM analysis revealed the resultant porous Si3N4 ceramics as having high aspect ratio, a rod-like microstructure, and a uniform pore structure. The sintered sample with Lu2O3 sintering additive, having a porosity of about 50%, showed a high flexural strength of 188 MPa, a high fracture toughness of 3.1 MPa·m1/2, due to fine β-Si3N4 grains, and some large elongated grains.  相似文献   

8.
Silicon nitride ceramics were prepared by spark plasma sintering (SPS) at temperatures of 1450°–1600°C for 3–12 min, using α-Si3N4 powders as raw materials and MgSiN2 as sintering additives. Almost full density of the sample was achieved after sintering at 1450°C for 6 min, while there was about 80 wt%α-Si3N4 phase left in the sintered material. α-Si3N4 was completely transformed to β-Si3N4 after sintering at 1500°C for 12 min. The thermal conductivity of sintered materials increased with increasing sintering temperature or holding time. Thermal conductivity of 100 W·(m·K)−1 was achieved after sintering at 1600°C for 12 min. The results imply that SPS is an effective and fast method to fabricate β-Si3N4 ceramics with high thermal conductivity when appropriate additives are used.  相似文献   

9.
The in situ β-Si3N4/α'-SiAlON composite was studied along the Si3N4–Y2O3: 9 AlN composition line. This two phase composite was fully densified at 1780°C by hot pressing Densification curves and phase developments of the β-Si3N4/α'-SiAlON composite were found to vary with composition. Because of the cooperative formation of α'-Si AlON and β-Si3N4 during its phase development, this composite had equiaxed α'-SiAlON (∼0.2 μm) and elongated β-Si3N4 fine grains. The optimum mechanical properties of this two-phase composite were in the sample with 30–40%α', which had a flexural strength of 1100 MPa at 25°C 800 MPa at 1400°C in air, and a fracture toughness 6 Mpa·m1/2. α'-SiAlON grains were equiaxed under a sintering condition at 1780°C or lower temperatures. Morphologies of the α°-SiAlON grains were affected by the sintering conditions.  相似文献   

10.
high-strength Si3N4with elongated β-Si3N4 and equiaxed α-sialon was tested in cyclic and static fatigue at 1400°C. At low stress intensity factors and high frequencies, the pullout process of the elongated grains was enhanced, which suppressed the crack growth. This provides a possible explanation for the increased lifetime under cyclic leading conditions reported for ceramics by several investigators. While crack-healing by high-temperature annealing was found to greatly reduce the subsequent static fatigue crack growth rate, it had only a modest effecf on cyclic fatigue and none at high frequencies.  相似文献   

11.
Electrical conductivity was measured from 850° to 1400°C for β-sialon and pure X phase as well as for the sintered system Si3N4-Al2O3, containing β-sialon, X phase, β-Si3N4, and glassy phase. Ionic conductivity was measured at >1000°C. The charge carriers were identified by electrolysis. The results showed that pure β-sialon is ionically conducting because of Si4+ migration for the temperature range studied. Pure X phase shows ionic conduction by Si4+ above 1000°; below 1000°C, it shows electronic conduction because of impurities. The conductivity of the sintered system Si3N4-Al2O3 containing β-sialon, β-Si3N4 X phase, and glassy phase changes as the relative quantities of β -sialon and X phase change. The apparent activation energies for the ionic and electronic conductivities are 45 and 20 kcal/mol, respectively.  相似文献   

12.
Dy-α-sialon and β-Si3N4 materials containing Dy-oxynitride glass were hot pressed at 1800°C for 1 h. The luminescence spectra of Dy3+ in these samples were compared when excited at 350 nm. The results showed that two strong emission bands in the region 470–500 nm and 570-600 nm, associated with the 4F9/26H15/2 and 4F9/26H13/2 transitions of Dy3+ ions, were observed in Dy-α-sialon. However, no emission peak was detected from the β-Si3N4 sample, despite it containing the same amount of Dy3+ cations. This proved that only the Dy3+ cations in the α-sialon structure, not those in the oxynitride glass, produce the luminescence spectrum.  相似文献   

13.
In this paper, a new net-shaping process, an hydrolysis-induced aqueous gelcasting (GC) (GCHAS) has been reported for consolidation of β-Si4Al2O2N6 ceramics from aqueous slurries containing 48–50 vol%α-Si3N4, α-Al2O3, AlN, and Y2O3 powders mixture. Dense ceramics of same composition were also consolidated by aqueous GC and hydrolysis assisted solidification routes. Among three techniques used, the GCHAS process was found to be superior for fabricating defect-free thin wall β-Si4Al2O2N6 crucibles and tubes. Before use, the as purchased AlN powder was passivated against hydrolysis. The sintered β-Si4Al2O2N6 ceramics exhibited comparable properties with those reported for similar materials in the literature.  相似文献   

14.
Elongated β'-SiAlON grains grown from several finegrained Ym/3Si12(m+n)Alm+nOnN16–r compositions with α-Si3N4, AlN, Al2O3, and Y2O3 starting materials have been examined. These grains have large aspect ratios and are oriented along the [0001] axis. TEM structural and chemical analysis suggests that they are nucleated from various seed crystals, which can be α-Si3N4, β-Si3N4, or other β'-SiAlON. The β'-SiAlON seed and the initial precipitation on β-Si3N4 show a higher content of Al and O, indicating that a large transient supersaturation of Al and O in the liquid is instrumental for β'-SiAlON formation, whereas subsequent growth proceeds under a much lower driving force. The misfit between phases is accommodated by interfacial dislocations ( c -type and a -type). Fully grown β'-SiAlON grains usually contain several variants independently nucleated from the same seed. In particular, the two alternative α/β phase-matching possibilities result in two [0001] growth habits separated by a twin boundary.  相似文献   

15.
Fine Si3N4-SiC composite powders were synthesized in various SiC compositions to 46 vol% by nitriding combustion of silicon and carbon. The powders were composed of α-Si3N4, β-Si3N4, and β-SiC. The reaction analysis suggested that the SiC formation is assisted by the high reaction heat of Si nitridation. The sintered bodies consisted of uniformly dispersed grains of β-Si3N4, β-SiC, and a few Si2N2O.  相似文献   

16.
Silicon nitride (Si3N4) and SiAlONs can be self-toughened through the growth of elongated β-Si3N4/β-SiAlON grains in sintering. α-SiAlONs usually retain an equiaxed grain morphology and have a higher hardness but lower toughness than β-SiAlONs. The present work has demonstrated that elongated alpha-SiAlON grains can also be developed through pressureless sintering. alpha-SiAlONs with high-aspect-ratio grains in the calcium SiAlON system have exhibited significant grain debonding and pull-out effects during fracture, which offers promise for in-situ -toughened α-SiAlON ceramics.  相似文献   

17.
The densification behavior of Si3N4 containing MgO was studied in detail. It was concluded that MgO forms a liquid phase (most likely a magnesium silicate). This liquid wets and allows atomic transfer of Si3N4. Evidence of a second-phase material between the Si3N4 grains was obtained through etching studies. Transformation of α- to β-Si3N4 during hot-pressing is not necessary for densification.  相似文献   

18.
Starting from Si powder, NaN3 and different additives such as N -aminothiourea, iodine, or both, Si3N4 nanomaterials were synthesized through the nitridation of silicon powder in autoclaves at 60°–190°C. As the additive was only N -aminothiourea, β-Si3N4 nanorods and α-Si3N4 nanoparticles were prepared at 170°C. If the additive was only iodine, α-Si3N4 dendrites with β-Si3N4 nanorods were obtained at 190°C. However, when both N -aminothiourea and iodine were added to the system of Si and NaN3, the products composed of β-Si3N4 nanorods and α, β-Si3N4 nanoparticles could be prepared at 60°C.  相似文献   

19.
A microstructure that consisted of uniformly distributed, elongated β-Si3N4 grains, equiaxed β-SiC grains, and an amorphous grain-boundary phase was developed by using β-SiC and alpha-Si3N4 powders. By hot pressing, elongated β-Si3N4 grains were grown via alpha right arrow β phase transformation and equiaxed β-SiC grains were formed because of inhibited grain growth. The strength and fracture toughness of SiC have been improved by adding Si3N4 particles, because of the reduced defect size and the enhanced bridging and crack deflection by the elongated β-Si3N4 grains. Typical flexural-strength and fracture-toughness values of SiC-35-wt%-Si3N4 composites were 1020 MPa and 5.1 MPam1/2, respectively.  相似文献   

20.
By using α-Si3N4 and β-Si3N4 starting powders with similar particle size and distribution, the effect of α-β (β') phase transition on densification and microstructure is investigated during the liquid-phase sintering of 82Si3N4·9Al2O3·9Y2O3 (wt%) and 80Si3N4·13Al2O3·5AIN·5AIN·2Y2O3. When α-Si3N4 powder is used, the grains become elongated, apparently hindering the densification process. Hence, the phase transition does not enhance the densification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号