首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
环氧树脂/氧化锌晶须/氮化硼导热绝缘复合材料的研究   总被引:6,自引:0,他引:6  
以环氧树(脂EP)为基体,分别以氧化锌晶(须ZnOw)和ZnOw/氮化硼(BN)混合物为导热填料,制备了EP导热绝缘复合材料。研究了填料含量对复合材料导热性能、电绝缘性能及力学性能的影响,并利用扫描电镜对复合材料的断面形貌进行了观察。结果表明:随着导热填料含量的增大,复合材料的导热系数和介电常数增大,体积电阻率下降,而拉伸强度呈先增大后减小的趋势;在填料含量相同的情况下,EP/ZnOw/BN复合材料比EP/ZnOw复合材料具有更好的导热性能;当填料体积分数为15%时,EP/ZnOw/BN复合材料的热导率为1.06W/(mK)而,EP/ZnOw复合材料的热导率仅为0.98W/(mK)。  相似文献   

2.
以Al2O3、MgO和BN三种无机填料作为尼龙6(PA6)的导热填料,研究填料的种类、填充量、粒径大小和粒径配比等对复合材料热导率的影响。结果表明:PA6基复合材料的热导率随导热填料填充量的增加而增大,随导热系数大的填料填充量的增加增大较快;导热系数大的填料的粒径对复合材料的导热系数的影响比较明显;导热系数大的填料,不同粒径的复配可以显著提高复合材料的导热系。  相似文献   

3.
以聚丙烯(PP)为基体,四针状氧化锌晶须(T-ZnOw)和氧化镁(MgO)为导热填料,通过双螺杆挤出机制备了PP/T-ZnOw /MgO导热绝缘复合材料。在T-ZnOw用量为10 %(质量百分含量,下同),MgO用量在0~60 %的范围内,考察了MgO用量对复合材料的热导率( )、体积电阻率(ρv)、力学性能和加工性能的影响。结果表明,随着MgO用量的增加,PP/T-ZnOw /MgO复合材料的 增大,ρv减小;材料的拉伸强度和弯曲强度以及熔体流动速率均随着MgO用量的增加而下降,而冲击强度则呈先保持稳定,然后减小的趋势。这一变化趋势在MgO用量 30 %时较为显著。当MgO用量为60 %(33 %,体积分数)时,PP/T-ZnOw /MgO复合材料的 最大,达到0.7563 W/(m·K),比未加MgO时的PP/T-ZnOw复合材料和纯PP的热导率分别提高了108.0 %和210.0 %;此时材料的ρv最小,为9.20×1015 Ω·cm,仍可满足绝缘材料的要求。  相似文献   

4.
以聚酰胺6(PA6)为基体, 氮化硼(BN)作为导热填料,经双螺杆挤出机熔融共混,模压成型制得导热绝缘复合材料。研究了BN含量、粒径、形状和不同BN粒径复配对复合材料导热性能的影响,并研究了BN含量和粒径对复合材料绝缘性能的影响。结果表明,在各种粒径下,复合材料热导率均随BN填充量的增加而增大;在BN粒径为5 μm、填充量为25 %(体积分数,下同)时,复合材料热导率达到1.2187 W/(m·K);在BN填充量相同时,填料粒径对复合材料热导率的影响不是简单的单调规律,呈现50、100 μm时较小,1、5、15 μm时较大,150 μm时最大的规律;片状BN填料比球状BN填料更有利于提高复合材料的热导率;2种不同粒径填料复配所填充的复合材料的热导率大于单一粒径填充的复合材料;5 μm与150 μm粒径BN复配,在填充量为20 %,配比为1:3时,复合材料的热导率最大,达到1.3753 W/(m·K),为纯PA6的4.9倍;在不同BN含量和粒径下,复合材料体积电阻率均能达到10000000000000 Ω·cm以上,满足绝缘性能。  相似文献   

5.
采用氮化硼(BN)作为导热填料,通过熔融共混法制备聚酰胺6/氮化硼(PA6/BN)导热复合材料,通过扫描电子显微镜(SEM),万能试验机等方法研究了经过硅烷偶联剂(KH550)处理的BN对PA6/BN复合材料的导热性和力学性能的影响。实验结果表明:在填充相同含量(10%)的BN情况下,随着硅烷偶联剂添加量的增加,断面越来越粗糙,BN表面被树脂包裹,形成导热通路,且导热系数不断提高形成更长的导热通路,减少热阻,从而提高热导率;当偶联剂含量超过3%时,复合材料的导热系数基本稳定不再增加,导热系数趋于稳定。进一步研究BN的添加量对PA6/BN导热复合材料的力学性能和导热系数的影响,随着BN含量的增加,复合材料的缺口冲击强度逐渐下降;随着BN含量的增加,PA6/BN复合材料的弯曲强度先增加后降低,而弯曲模量不断增加,随着BN添加量达到30%时,导热系数达到0.628 7 W/(m·K),是未添加BN的2.67倍。  相似文献   

6.
以尼龙6 (PA6)为基体,采用两种不同粒径的氧化铝(Al203)按1∶1混合后,再与高导热填料氮化铝(AlN)复配成导热填料,采用熔融挤出法制备PA6/Al20JAlN导热绝缘复合材料.研究了复配填料含量为60%时,复配填料中AlN含量对复合材料力学性能、导热性能和结晶性能的影响.采用扫描电子显微镜(SEM)对复合材料的微观形貌进行了表征.结果表明,复合材料的热导率随着复配填料中AlN含量的增加而增大.复合材料的拉伸强度和弯曲强度随复配填料中AlN含量的增加先增大再减小,AlN含量占复配填料的50%时,复合材料拉伸强度和弯曲强度分别达到最大值83.09 MPa和137.14MPa.复合材料的结晶度和熔融温度没有显著变化.扫描电镜显示填料与基体的相容性较好.  相似文献   

7.
采用熔融共混法制备了Al N/PA6导热复合材料,并深入研究了硅烷偶联剂KH-550含量、导热填料Al N粒径和含量对复合材料导热性能的影响。结果表明,偶联剂对Al N/PA6界面的键合作用以及在Al N表面形成的包覆结构导致了复合材料的热导率随偶联剂含量的增多而先增大后减小。当偶联剂的加入量为1.0wt%时,复合材料的热导率最好,达到0.451 W/(m·K)。Al N粒径大小会影响复合材料的Al N/PA6界面多少和Al N在基体中的分散均匀性,从而影响其导热性能。当Al N粒径为3μm时,热导率最高。随着Al N含量的增多,导热链会逐渐形成,从而使得复合材料的热导率逐渐增大,且增长幅度呈先缓后急的趋势。  相似文献   

8.
主要研制了导热聚对苯二甲酸丁二醇酯/聚酰胺复合材料(PBT/PA),选用纳米氧化镁(MgO)为导热填料。首先探讨了基体树脂配比PBT/PA对PBT/PA/MgO复合材料导热和力学性能的影响;然后固定基体树脂配比,考察了纳米氧化镁的添加量对PBT/PA/MgO复合体系的导热性能和力学性能的影响。实验结果表明,当PBT/PA配比为1∶1,纳米氧化镁添加量为40wt%时PBT/PA/MgO复合材料在保持一定的力学性能的基础上热导率达到0.787W/(m.K),表明该复合体系具有优良的导热性能和力学性能。此外还研究了不同加工方法对复合材料力学性能和导热性能的影响,采用二步法制备的复合材料的导热性能和力学性能较一步法更为优异。利用二步加工法,同时通过调节PBT/PA配比控制共混物的双连续相形态,从而制备出导热性能较好的PBT/PA/MgO复合材料。  相似文献   

9.
周宏霞  王明明 《粘接》2012,(11):52-55
分别采用氮化硼(BN)、氧化铝(Al2O3)和复配BN/Al2O3作为导热填料制备环氧树脂导热复合材料。结果表明,环氧树脂热导率随导热填料用量的增加而增大;同等用量下,BN/Al2O3/环氧树脂复合材料的导热性能均优于BN/环氧树脂和Al2O3/环氧树脂。当BN/Al2O3质量分4~50%[m(BN)/m(Al2O3)=3/1J,复合材料热导率为08194W/mK。此外,随BN/Al2O3用量的增加,环氧树脂的介电常数和介电损耗角正切增加,而弯曲强度和冲击强度则先增加后降低。  相似文献   

10.
以不同粒径的球形氧化铝(α-Al_2O_3)和少量二维氮化硼(BN)为填料,聚酰胺6 (PA6)为基体,通过熔融共混法制备了PA6/Al_2O_3/BN导热复合材料,并使用激光散射仪等对其各向导热性能进行了研究。由于两种填料粒子间的协同作用,复合材料的导热性能相对仅以氧化铝为填料时得到了明显的提升。研究还发现氧化铝粒子能降低BN在垂直于热压方向的取向系数,从而使复合材料导热系数的各向异性指数得到降低,材料在平行于热压方向上(Through-plane)也兼具较好的导热性能。在填料总体积分数为47%时(其中氧化铝为40%、BN为7%),PA6/Al_2O_3/BN复合材料在平行及垂直于热压方向(In-plane)的导热系数最高分别达到了2.32 W/(m·K)和2.90 W/(m·K),较之使用50% Al_2O_3的PA6/Al_2O_3复合材料,其导热系数在各方向上分别提升了26.78%、58.47%。此外,红外热图测试进一步表明了PA6/Al_2O_3/BN复合材料较好的散热性能。  相似文献   

11.
耐高温高导热环氧树脂/玻纤/BN复合材料的制备   总被引:1,自引:0,他引:1  
以4,4-二氨基二苯砜(DDS)和内亚甲基四氢邻苯二甲酸酐(NA)为复配固化剂,采用高温模压成型法制备耐高温高导热环氧树脂/玻纤/氮化硼(BN)复合材料。探讨了BN用量和偶联剂处理对复合材料冲击强度、导热性能和电阻率的影响。结果表明:当nDDS:nNA=3:1时,复合材料的耐热性能最佳。当BN质量分数为8%时,复合材料的冲击强度最高;导热性能随BN用量的增加而增加,当BN用量为15%时,热导率为0.7560W/(mk),此时复合材料仍保持较高的体积、表面电阻率;当BN填充量为一定值时,偶联剂处理使冲击强度和导热性能得到进一步提高。  相似文献   

12.
A simple method is reported to increase the thermal conductivity and improve the poor mechanical properties caused by high filler loadings of epoxy composites, simultaneously. Epoxy composites were prepared with micro‐boron nitride (BN) and silicon carbon whisker (SiCw) chemically treated by 3‐aminopropyltriethoxysilane (KH550) and 3‐glycidyloxypropyltrimethoxysilane (KH560), respectively. Effects of surface modification of BN particles on the thermal conductivity and flexural strength of epoxy/BN composites were investigated. About 3% SiCw particles grafted with KH560 were incorporated into composites with BN grafted with KH550, which led to about 13.8–17.8% increase of the flexural strength as well as a marginal improvement of the thermal conductivity of composites, and they possessed good dielectric properties. In addition, dynamic mechanical analysis results showed that the storage modulus of composites increased significantly with the addition of fillers, while the glass transition temperature exhibited a slight decrease. POLYM. COMPOS., 37:2611–2621, 2016. © 2015 Society of Plastics Engineers  相似文献   

13.
Polyimide (PI) composites with mixed fillers of BN flakes and SiC whiskers exhibit enhanced thermal conductivity and mechanical properties. In order to improve dispersion and interaction of these mixed fillers within the PI matrix, BN flakes were modified by a titanate coupling agent while SiC whiskers were oxidized at 750°C for 60 minutes to produce SiC@SiO2 followed by silane coupling agent modification. PI composites reached a maximum thermal conductivity of 0.95 W/m K at volume fraction of mixed fillers of 27.6 vol% when the weight ratio of BN flakes to SiC@SiO2 whiskers was 1:4. The enhanced thermal conductivity is likely attributed to the formation of heat conductive networks constructed by BN flakes and SiC@SiO2 whiskers and the improved interfacial affinity between fillers and matrix. The optimized Nielsen-mold confirms the distribution and morphology of fillers affect the thermal conductivity of PI composites. In addition, SiC whiskers enhanced the mechanical property of PI composites and the influence of fillers on the mechanical property was further elaborated.  相似文献   

14.
The effects of boron nitride (BN) and aluminum nitride fillers on polyamide 6 (PA6) hybrid polymer composites were investigated. In particular, the thermal and electrical conductivity, thermal transition, thermal degradation, mechanical and morphological properties and chemical bonds characteristic of the materials with crystal structure of BN and aluminum nitride (AlN) filled PA6 prepared at different concentrations were characterized. Thermal conductivity of hybrid systems revealed a 1.6-fold gain compared to neat PA6. The highest thermal conductivity value was obtained for the composite containing 50 vol% additives (1.040 W/m K). A slight improvement in electrical conductive properties of composites appears and the highest value was obtained for the 50 vol% filled composite with only an increase by 3%. The microstructure of these composites revealed a homogeneous dispersion of AlN and BN additives in PA6 matrix. For all composites, one visible melting peak around 220°C related to the α-form crystals of PA6 was detected in correlation with the X-ray diffraction results. An improved thermal stability was obtained for 10 vol% AlN/BN filled PA6 composite (from 405.41°C to 409.68°C). The tensile strength results of all composites were found to be approximately 22% lower than pure PA6.  相似文献   

15.
采用高温模压成型法制备环氧树脂/玻纤/BN导热复合材料,探讨了BN用量对复合材料力学性能、导热性能和电性能的影响,结果表明.当BN用量为10%时,复合材料的冲击强度和弯曲强度较佳;导热性能随BN用量的增加而提高,当BN用量为20%耐.热导率为0.7438 W/mk,此时复合材料仍保持较好的绝缘性能.  相似文献   

16.
High thermal conductivity fillers of boron nitride (BN) and vapor‐grown carbon fiber (VGCF) were used alone or incorporate to prepare polypropylene (PP) composites. The effects of filler content, particle size and shape, and single vs. hybrid BN/VGCF fillers were investigated with respect to the thermal conductivity of the PP composites. The thermal conductivity of PP/BN composites depended upon the content and particle size of the BN. Increased content and length of VGCF had the effect of increasing the thermal conductivity of the PP composites. Hybrid fillers were created with a mixture of medium‐sized BN and long‐length VGCF; hybrid BN/VGCF fillers enhanced the thermal conductivity of PP composites with a lower total content compared with PP composites containing only medium‐sized BN particles. POLYM. COMPOS., 37:936–942, 2016. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号