首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《金属功能材料》2014,(5):50-50
<正>同典型的Bi2Te3、PbTe等热电材料比较,Si是轻元素,在地壳中储量极为丰富,而且无毒性,是环境和谐元素。因此,若能开发出含Si的热电材料,则将成为不含稀有元素的低价无毒的热电材料。日本大阪大学大石佑治概括了纳米硅室温下热导率同热电优值的关系,表明纳米硅的优良热电性能主要取决于热导率  相似文献   

2.
Bi2Te3基热电材料的湿化学还原法合成反应机制   总被引:1,自引:0,他引:1  
以BiCl3、Te为初始原料,在NaOH所提供的碱性环境中利用EDTA包裹BP,采用NaBH4作为还原剂,由此通过湿化学还原法制备高纯Bi2Te3基粉体材料。利用X射线衍射(XRD)对粉体材料进行相组成分析,利用扫描电镜(SEM)和电子探针(EPMA)进行了形貌观察和元素成分表征。通过研究反应温度、还原剂NaBH4的含量以及EDTA的包裹效应对产物化学组分和显微形貌的影响规律,阐明了制备过程中的反应机制。结果显示:NaBH4加入量的适当改变以及EDTA的包裹效应可起到调节Bi^3+、Te^4+被还原速度的作用,从而有利于产物纯度的提高,并可获得晶粒尺度约为100-200nm的圆球状Bi2Te3基粉体材料。  相似文献   

3.
《金属功能材料》2014,(5):51-51
<正>日本首都大学(东京)等单位研究团队发现,高纯度半导体型单层碳纳米管(S-SWCNT)薄膜具有优良的将热能转变为电能的特性,其塞贝克系数不亚于已经实用化的Bi2Te3热电材料。由于这种薄膜的塞贝克系数与其所仿S-SWCNT比率密切相关,所以通过改变比率的方法很容易制成热电转换组件。通过理论计  相似文献   

4.
两元P—型梯度结构热电材料FeSi2/Bi2Te3的制备与性能   总被引:2,自引:1,他引:1  
采用热浸焊法用纯Sn作为过渡层制备了P-型FeSi2/Bi2Te3梯度结构热电材料并对其热电性能进行了测试,发现当热端温度在510℃以下时,梯度结构热电材料的平均Seebeck系数保持恒定,达220uV/K至250uV/K左右,显著高于单一均质材料(Bi2Te3和β-FeSi2)在相同温度范围内的平均Seebeck系数,梯度结构热电材料的输出功率较单种材料高1.5至2倍以上,且当材料经190℃,100h与200h的真空退火后,输出功率几乎不变,金相观察表明,在Sn层与两半导体界面处,没有明显的Sn 扩散迹象,说明在所试验的条件下,用Sn作为过渡层热稳定性较好。  相似文献   

5.
p—型FeSi2/Bi2Te3梯度热电材料的优值推证与界面温度优化   总被引:3,自引:0,他引:3  
通过对两元 p-型梯度热电材料 Fe Si2 / Bi2 Te3界面温度的建模计算与实验验证 ,在固定热冷端温区内积分得出的 Z- ΔT值与界面温度 Ti 的关系曲线为 :Z- ΔT =0 .6 72 +11.7× 10 - 4Ti - 1.31× 10 - 6 T2i - 3.4 9× 10 - 9T3i该关系可用来表征两元梯度结构的热电性能。从拟合曲线上得出该梯度结构的最佳界面温度为 2 2 0℃~ 2 30℃ ,这与实验测出两单段材料 (Fe Si2 ,Bi2 Te3)长度比为 10∶ 1左右时所形成的界面温度较为接近。通过测试不同长度比的材料输出功率 ,也发现 10∶ 1梯度材料的最大输出功率较大 ,是相同温差下单段 β- Fe Si2 材料的 2倍~ 2 .6倍。  相似文献   

6.
热电材料是一种集发电与制冷两种功能于一身的新型功能材料,已经成为21世纪新型功能材料研究领域的热点。概述了热电材料的发展历史,阐明了热电效应的理论基础,新型高效热电材料的发展现状及发展趋势,并对如何提高热电材料的优值系数及热电转化效率进行了分析。  相似文献   

7.
以Bi(NO3)3和Te为反应物,在乙二胺四乙酸二钠(EDTA-2Na)、N,N-二甲基甲酰胺(DMF)与乙醇组成的混合溶剂以及过量强碱KOH的作用下,通过溶剂热反应,制得Bi2Te3热电材料的片式阵列纳米结构。利用XRD、SEM、EDX对产物的物相、形貌及成分进行了表征和研究。通过实验研究推断这种BizTe,片式阵列的形成过程可能是一个络合-成核-生长-脱离-组装的过程。  相似文献   

8.
热电材料是一种能实现热能和电能转换的功能材料,在能源枯竭、环境问题凸显的今天,其作为一种绿色可再生的新型能源转换材料,其重要性日渐显现。简单介绍了热电材料的热电转换原理,目前研究中改进热电材料性能的主要方式,热电材料目前主要研究的种类及最新应用领域等,以期为后续热电材料的研究提供借鉴。  相似文献   

9.
Bi2Te3基热电材料需与电极Cu连接构成热电模块.采用无铅钎料Sn-Bi及钎剂实现了大气环境中分别直接钎焊p型(Bi,Sb)2Te3与无氧Cu和n型Bi2(Te,Se)3与无氧Cu.观察了接头的组织及Sn,Cu,Bi元素在接头处的线分布和面分布.通过研究表明,Sn元素与p型(Bi,Sb)2Te3的反应比与n型Bi2(Te,Se)3剧烈,在(Bi,Sb)2Te3与Sn-Bi界面处形成了5~7 μm的Sn反应层;Cu元素在Cu/Sn-Bi界面处也形成几微米的反应层;温度增加,两种反应的程度均有增加趋势.利用Gleeble1500D试验机测试了两种类型接头的抗剪强度,结果表明,(Bi,Sb)2Te3/Sn-Bi/Cu接头平均抗剪强度为5.1MPa,Bi2(Te,Se)3/Sn-Bi/Cu接头则为4.4 MPa,(Bi,Sb)2Te3/Sn-Bi/Cu接头强度分散性高于Bi2(Te,Se)3/Sn-Bi/Cu接头.接头主要断裂于反应层,反应层的成分、组织和厚度是影响接头强度的关键因素.  相似文献   

10.
赵立东  王思宁  肖钰 《金属学报》2021,57(9):1171-1183
热电材料是一种能将热能与电能直接相互转换的功能材料,其热电转换效率由材料的平均热电优值决定.高热电优值要求材料同时具有高的电传输性能和低的热导率,即"电子晶体-声子玻璃"特性.常用的能带调控和缺陷设计虽然能优化载流子有效质量和晶格热导率,但同时会造成载流子迁移率的降低,使得材料的平均热电优值提升有限.所以,保持高的载流子迁移率是提升材料在宽温域内平均热电优值的关键.本综述总结了提高热电材料载流子迁移率的方法,包括晶体缺陷调控和热电耦合参数调控.其中,晶体缺陷调控包括制备晶体、对称性调控和微缺陷调控策略;热电耦合参数调控包括能带对齐、调制掺杂和能带锐化策略.同时讨论了这些策略在多个热电材料体系中的应用,证明以上策略可以有效平衡载流子与声子散射,协同调控载流子迁移率、有效质量和载流子浓度之间的关系,在宽温域内获得热电优值的大幅提升.概括表明,载流子迁移率优化策略是一种提升热电材料性能的有效手段,为开发高效热电材料提供了新的研究思路.  相似文献   

11.
β-FeSi2基热电材料的研究进展   总被引:1,自引:1,他引:1  
介绍了β-FeSi2合金的基本特性和制备方法。评述了目前通过不同的元素掺杂可制得N型或P型β-FeSi2基半导体材料以及在热电性能方面取得的重要大进展。其中掺杂Co,B元素可得到N型β-FeSi2基半导体材料,且掺杂Co,在850K最大ZT值为0.4;而掺杂B,高于800K时Z值是未掺杂3 ̄6倍,在667K最大Z值为1.18×10-4K-1。掺杂Mn,Cu,Al可获得P型β-FeSi2基半导体材料,掺杂Mn在873K时最大Z值达2×10-4K-1;掺杂Cu可缩短β相的生成时间;掺杂Al,在743K获得的最大Z值为1.55×10-4K-1。指出通过结构优化、组分调整,进一步提高β-FeSi2基合金的热电性能。  相似文献   

12.
采用合金设计、真空熔炼、快速凝固、球磨制粉、冷压成形和常压烧结工艺,制备了Cu、S掺杂的n型Bi_(2)Te_(2.7)Se_(0.3)热电材料,采用XRD、SEM和ZEM-3热电测试系统等表征热电材料晶体结构、微观形貌和热电性能,研究Cu、S掺杂的n型Bi_(2)Te_(2.7)Se_(0.3)热电材料热电性能机理。结果表明:Cu_(y)Bi_(2)Te_(2.62)S_(0.08)Se_(0.3)热电材料晶体结构为R-3m空间群斜方晶系的六面体层状结构;掺杂Cu的Cu_(y)Bi_(2)Te_(2.7)Se_(0.3)热电材料,形成Cui间隙缺陷和Bi′Te反位缺陷,随着载流子(电子)浓度增加,载流子迁移率降低,电导率显著增大;掺杂S的Bi_(2)Te_(2.62-z)SzSe_(0.3)热电材料,生成化学键健能较Bi-Te强的Bi-S,抑制反位缺陷Bi′Te形成,少数(空穴)载流子浓度减小,同时增强声子对声子散射和点缺陷对声子散射,从而使晶格热导率和双极扩散热导率降低,总热导率明显降低,抑制塞贝克系数的减少;Cu、S共掺杂的协同作用,n型Cu_(y)Bi_(2)Te_(2.62-z)SzSe_(0.3)热电材料电导率增大,而热导率基本不变,由此ZT值和功率因子显著提高;在300~400 K温度范围内,Cu_(0.03)Bi_(2)Te_(2.62)S_(0.08)Se_(0.3)的电导率约为7.0×10^(4)S/m,塞贝克系数约为220μV/K,功率因子约为2.4 m W/(m·K^(2)),热电优值(ZT值)约为1.0。Cu_(0.03)Bi_(2)Te_(2.62)S_(0.08)Se_(0.3)热电材料可广泛应用于低温尤其室温条件下的热电制冷器件和温差发电电池。  相似文献   

13.
采用机械合金化(MA)结合热压烧结(HP)技术制备了n型Bi2 Te2.85Se0.15热电材料,在常温下测量了电阻率(ρ)、塞贝克系数(α)和热导率(κ)等热电性能参数,考察了掺杂剂AgI的含量(质量百分比分别为0,0.1,0.2,0.3和0.4%)对材料热电性能的影响.结果表明:试样的电阻率和塞贝克系数的绝对值均随AgI掺杂量的提高而增大,热导率则随AgI掺杂量的提高而大幅降低,在AgI掺杂量为0.2%(质量)时有最大热电优值,为2.0×10-3/K.  相似文献   

14.
机械合金化法制备的Mn15Bi34Te51和La15Bi34Te51热电材料   总被引:12,自引:0,他引:12  
用机械合金化法制备了Mn15Bi34Te51和La15Bi34Te51合金,XRD分析表明Mn15Bi34Te51和La15Bi34Te51分别在真空球磨150h和100h后实现合金化,La15Bi34Te51在真空球磨150h后形成了纳米结构的合金,镧原子的加入有助于Bi2Te3基合金的晶粒细化及非晶化。对La15Bi34Te51合金的XRD结构分析表明镧原子有可能进入了Bi2Te3层状结构的Te-Te原子层间。La15Bi34Te51合金Seebeck系数的测量表明当晶粒尺寸减小到纳米尺寸时,载流子散射机制有可能发生改变,导致了Seebeck系数的大幅上升。  相似文献   

15.
用水热法制备了晶粒尺寸为几十纳米到几百纳米的Bi2Te3粉末,再通过压片法制得不同孔隙率的Bi2Te3薄片材料,研究了孔隙率对Bi2Te3热电性能的影响。通过对热电性能的测试,研究发现压片法制得的Bi2Te3样品具有较高的孔隙率,且样品的热传导符合多孔材料的热传导规律。当Bi2Te3样品孔隙率较大时具有较低的热导率,在室温下测得孔隙率为43%的Bi2Te3薄片热导率为0.282W·m-1·K-1。材料热导率、电导率和ZT值均随孔隙率的增加而减小。  相似文献   

16.
采用石英管真空封装高纯度的Sb和Te粉末,在800℃熔炼12h,炉冷后研磨制备Sb2Te3粉末,真空热压烧结(480℃,20 MPa,保温1h),制备出Sb2Te3块体材料.用XRD、SEM和EDS对材料的物相、形貌和成分进行表征.XRD分析表明,真空熔炼合成粉末和热压烧结块体材料的XRD图谱峰与Sb2Te3的标准衍射图谱相对应.Sb2Te3热压块体材料在平行于热压方向的断面上分布有大量层片状结构,层片厚度均小于1μm,在层片状结构之间均匀分布着短的片状结构.与热压方向垂直的断面上也是层片状结构,层片状较短且分布较均匀,层片厚度大多在1μm左右.材料中Sb和Te的原子百分数分别为38.2%、61.8%,接近2∶3的原子百分比.  相似文献   

17.
用机械合金化工艺(MA)和放电等离子烧结工艺(SPS),制备出纳米SiC(平均直径约30nm)弥散分布的Bi2Te3热电材料,并研究了纳米SiC颗粒弥散对Bi2Te3性能的影响。实验采用MA合成纳米SiC分散Bi2Te3粉末,用SPS制备块体材料。XRD分析表明用MA和SPS成功制备了Bi2Te3合金,随着纳米SiC含量的增加,材料的颗粒尺寸减小,表明纳米SiC有抑制颗粒长大的作用。电学性能测试发现少量(体积分数≤1.0%)纳米SiC的加入对Bi2Te3电学性能有很大影响:虽然随着SiC含量的增加电导率有所降低,但Seebeck系数得到了提高。当加入0.1%SiC时,Seebeck系数和功率因子达到最大值,均高于纯Bi2Te3试样,随着SiC含量进一步增加,Seebeck系数和功率因子降低。显微硬度随着纳米SiC含量的增加也得到提高。综合实验结果表明极少量纳米SiC颗粒的加入可以提高Bi2Te3的电学性能和力学性能。  相似文献   

18.
采用缓慢冷却和液氮淬火两种真空熔炼工艺得到Bi2Te2.4Se0.6合金铸锭,再将铸锭研磨后热压烧结制备N型多晶样品。采用XRD、FESEM、激光热导仪及电学性能测试仪对样品的物相组成、断面形貌和热电性能进行分析和研究。结果表明:制备的多晶样品为单相;振动研磨得到的粉末热压后保留大量的微米级(1~5μm)颗粒。结合取向因子的计算结果可以推断,样品中无明显的晶粒择优取向;采用液氮淬火制备的样品由于晶粒细化的影响,其热导率显著降低,热电性能得到改善。在300~500 K温度范围内,液氮淬火试样BTSRS-OM-HP具有最大的功率因子和最低的晶格热导率;室温至500 K范围内,样品的晶格热导率保持在0.42~0.51 W/(m.K)之间,在468 K时,获得最大ZT值0.87。  相似文献   

19.
电弧工艺参数对合成Sb2Te3热电粉末材料的影响   总被引:1,自引:1,他引:0  
以单质Sb,Te粉末为原材料,采用真空电弧等离子体蒸发法对原材料进行加热、蒸发、气化并在收集体表面进行化学反应形成粉末,从而合成Sb<,2>Te,热电粉末材料.研究了电弧电流和氩气压力对合成Sb<,2>Te,热电粉末材料的平均粒径和生产率的影响,并通过场发射扫描电镜表征了Sb<,2>Te<,3>热电粉末材料的微观结构.结果表明,在100~175 A,随着电弧电流增大,粉末的平均粒径和生产率增加.在2~8kPa的氩气压力下,随着气体压力增大,粉末的平均粒径和生产率增大,粉末团聚较明显.  相似文献   

20.
热电元件焊接常用的焊料为铟基焊料和铋基焊料.由于碲化铋材料与低熔点合金焊料之间的浸润性较差,常在碲化铋基热电元件上镀覆镍镀层.本文在大气条件下,不加助焊剂,采用共晶SnBi和SnIn焊料分别对n型热电元件进行了铺展实验及界面显微组织的观察.铺展温度主要选择了210℃和300℃,实验表明300℃界面结合比250℃更好.此外,热电元件表面通过蒸镀仪蒸镀上薄镍层.对含薄镍层的热电元件与不含镍层的热电元件的铺展实验进行对比,得到薄镍镀层可能会增加界面裂纹.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号