首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The elevation of intracellular levels of cyclic AMP by forskolin stimulation of adenylate cyclase regulates early and late phase neutrophil responses differentially. Early phase neutrophil responses as measured by shape change in response to chemotactic factors, transmigration across a polycarbonate membrane and priming were unaffected by forskolin-induced elevation of intracellular cAMP. Late phase neutrophil responses such as release of superoxide anions, activation of phospholipase A2 and platelet activating factor (PAF) synthesis were inhibited by increasing intracellular cAMP through the addition of 10 microM forskolin for 10 min prior to stimulation. N-Formyl-methionyl-leucyl-phenylalanine-stimulated arachidonic acid release fell from 9.3% (untreated cells) to 4.6% in forskolin-treated cells. PAF generation was also inhibited from 430 pg/10(6) cells in untreated cells to background levels in forskolin-treated cells (110 pg/10(6) cells). Also, the reduction of cytochrome c by superoxide anions fell from 4.2 nmol/10(6) cells in the absence of forskolin to 2.0 nmol/10(6) cells following forskolin treatment. These results indicate that in neutrophils the elevation of cAMP acts differentially on cellular responses, not affecting early activation events, but markedly inhibiting late events such as the release of inflammatory mediators.  相似文献   

2.
We investigated the regulation of COX-2 expression and activity by adenosine receptors in rat microglial cells. The selective adenosine A2a-receptor agonist CGS21680 and the non-selective adenosine A1- and A2-receptor agonist 5'-N-ethylcarboxiamidoadenosine (NECA) induced an increase in COX-2 mRNA levels and the synthesis of prostaglandin E2 (PGE2). The adenosine A1-receptor agonist cyclopentyladenosine (CPA) was less potent, and the adenosine A1-receptor-specific agonist N6-2-(-aminophenylo)ethyladenosine (APNEA) showed only marginal effects. Microglia expressed adenosine A1-, A2a-, and A3-, but not A2b-receptor mRNAs, whereas astroglial cells expressed adenosine A2b- but not A2a-receptor mRNA. The adenosine A2a-receptor selective antagonist (E)-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine (KF17837) inhibited both CGS21680-induced COX-2 expression and PGE2 release. CGS21680-increased PGE2 levels were inhibited by dexamethasone, by the nonsteroidal antiinflammatory drug meloxicam, and by the adenylyl cyclase inhibitor 9-(tetrahydro-2-furanyl)-9H-purine-6-amine (SQ22536). CGS21680 and NECA both increased intracellular cAMP levels in microglial cells. Dibutyryl cAMP as well as forskolin induced the release of PGE2. The results strongly suggest that adenosine A2a-receptor-induced intracellular signaling events cause an up-regulation of the COX-2 gene and the release of PGE2. Apparently, the cAMP second messenger system plays a crucial role in COX-2 gene regulation in rat microglial cells. The results are discussed with respect to neurodegenerative disorders of the CNS such as Alzheimer's disease, in which activated microglia are critically involved and COX inhibitors may be of therapeutic benefit.  相似文献   

3.
Using an in vitro static incubation system of adult male rat hypothalami, we have studied the effect of melatonin on the release of gonadotropin-releasing hormone (GnRH) and cyclic adenosine monophosphate (cAMP). Mediobasal hypothalamus (MBH) and preoptic area (POA) were incubated separately in Minimum Essential Medium (MEM) for 6 h. The release of GnRH was measured by radioimmuno-assay in the incubation medium sampled every 7.5 min. In the MBH and POA incubation medium, the mean amount of GnRH released was 8.9 +/- 1.1 and 3.4 +/- 0.6 pg GnRH/7.5 min, respectively (P < 0.01). The mean number of GnRH pulses under basal conditions was 2 +/- 0.3 per 2 h in the MBH and 1.6 +/- 0.3 per 2 h in the POA (P > 0.05). Melatonin (10(-8) M) did not alter the release of GnRH in the presence or absence of forskolin (10(-4) M). Melatonin, which was without effect on basal cAMP, inhibited forskolin-stimulated cAMP accumulation in the medium by 50% in the MBH and 40% in the POA. These results suggest that in our incubation system, melatonin does not modify GnRH release, but probably acts through the melatonin binding sites located in the hypothalamus to inhibit forskolin-stimulated cAMP.  相似文献   

4.
Melittin, a membrane-active peptide of bee venom, as well as synthetic melittin, stimulated the biosynthesis of prostaglandins by mouse transformed fibroblasts (MC5-5), human fibroblasts (D550), rabbit aorta endothelial cells (CLO), rat lung type II alveolar pneumocytes (L-2) and rabbit smooth muscle cells (R-I). The melittin peptides also stimulated the release of arachidonic acid from the cellular phospholipids of MC5-5 cells. The stimulated prostaglandin biosynthesis by MC5-5 cells was inhibited by indomethacin and dexamethasone. Dexamethasone inhibited also the release of arachidonic acid by MC5-5 cells. In mice, intraperitoneal inoculation of melittin increased 13,14-dihydro-15-keto-PGE2 levels in peripheral blood. Prior injections of the mice with indomethacin prevented the melittin-induced increase in this PGE2 metabolite.  相似文献   

5.
A Kawamura  N Tamaki  T Kokunai 《Canadian Metallurgical Quarterly》1998,38(10):633-8; discussion 638-40
The effect of glucocorticoid on cell proliferation, the expression of glucocorticoid receptor, and the relationship between inhibition of cell growth and apoptosis were investigated in four established neuroepithelial tumor cell lines (KNS42, T98G, A172, and U251MG). Glucocorticoid receptor expression was located in the cytoplasm of untreated cells, but translocated into nuclei after treatment with dexamethasone in KNS42, T98G, and A172 cells. U251MG did not express glucocorticoid receptors. Dexamethasone significantly inhibited the growth of KNS42 and T98G cell lines, at high concentrations in contrast to growth stimulation at low concentration. Dexamethasone inhibited proliferation of A172 cell line at all concentrations from 10(-4) M to 10(-7) M. These were prevented by RU38486, a specific glucocorticoid antagonist. Apoptosis did not occur in any cell lines after dexamethasone treatment. There was no response to glucocorticoid by U251MG cells. Dexamethasone treatment of neuroepithelial tumor cells expressing glucocorticoid receptors causes translocation into the nucleus to modulate cell proliferation upon binding of different concentrations of dexamethasone in vitro. Dexamethasone inhibits proliferation of some neuroepithelial cell lines, not by glucocorticoid-induced apoptosis. The bimodal potential of glucocorticoid to stimulate or suppress proliferation of neuroepithelial tumor cells expressing glucocorticoid receptor must be considered in clinical trials.  相似文献   

6.
The polarization of hepatocytes to form a connected network of bile canaliculi (BC) is necessary for the function of the liver. Hepatocyte polarization may be controlled by soluble factors and/or physical interactions between cells. Monolayer cultures of embryonic chicken hepatocytes in DMEM supplemented with ornithine, dexamethasone, and insulin express BC-specific antigens for at least 7 days. However, BC-specific antigen expression is lost within 3 days of culture initiation in DMEM containing 10% fetal calf serum. The dedifferentiating effects of fetal calf serum (FCS) can be reversed. Furthermore, cultures in medium containing ornithine, dexamethasone, insulin, and 10% FCS appear identical to cultures grown in 10% FCS alone. Thus FCS contains a soluble inhibitor of hepatocyte polarization. Aggregate cultures grown in suspension maintain hepatocyte polarization for 10-12 days. This may be due to the increased cell-cell contact between hepatocytes in aggregate culture or to more normal contact with the extracellular matrix. We have evaluated the role of cadherin-mediated interactions on hepatocyte polarization. Anti-E-cadherin Fab' fragments disrupted the formation of long networks of BC in monolayer cultures but did not stop polarized expression of BC-specific antigens. The BC antigens in anti-E-cadherin-treated cells were concentrated in small areas between cells and were present at lower levels uniformly on the cell surface. These results indicate that E-cadherin is required for the formation of extended BC networks, but that other factors are responsible for maintaining the synthesis and localization of BC-specific antigens.  相似文献   

7.
Dexamethasone administration at different stages of gestation in the baboon was studied for its effect on maternal steroid hormone concentrations. Dexamethasone (2 mg i.m. at 12 h intervals for three doses) was administered at early (days 37-39), mid (days 76-85) or late (days 112-123) gestation and morning blood samples were collected before, during and after dexamethasone suppression for 6 consecutive days. Dexamethasone treatment, at all stages of pregnancy, resulted in a significant decline in maternal serum cortisol concentrations, which rapidly return to normal concentrations after treatment. Progesterone concentrations were not affected by dexamethasone at any stage of gestation. Serum concentrations of oestradiol, testosterone and androstenedione were unchanged following dexamethasone administration in early pregnancy. A trend toward lower serum oestradiol was observed following dexamethasone administration in both mid and late gestation, but this was not significant. Both testosterone and androstenedione were significantly decreased following dexamethasone in both mid and late pregnancy and recovered to pretreatment concentrations within a few days after cessation of treatment. These results confirm other studies which demonstrate that adrenal precursors (maternal or fetal) are a major contributor to maternal serum concentrations of oestradiol. They also demonstrate that these adrenal precursors increase serum concentrations of testosterone and androstenedione in the pregnant baboon. Since these changes are only evident after that time (>40 days) when the fetal adrenal is steroidogenically competent, a role for fetal adrenal involvement in maternal serum androgen concentrations is suggested.  相似文献   

8.
We have previously shown that stimulation of cortical cultures containing both neurons and astrocytes with the beta-adrenergic agonist isoproterenol (ISO) results in transport of cAMP from astrocytes followed by extracellular hydrolysis to adenosine [Rosenberg et al. J. Neurosci. 14 (1994) 2953-2965]. In this study we found that the endogenous catecholamines epinephrine (EPI) and norepinephrine (NE), but not dopamine, serotonin, or histamine, all at 10 microM, significantly stimulated intracellular cAMP accumulation, cAMP transport, and extracellular adenosine accumulation in cortical cultures. Detailed dose-response experiments were performed for NE and EPI, as well as ISO. For each catecholamine, the potencies in evoking intracellular cAMP accumulation, cAMP transport, and extracellular adenosine accumulation were similar. These data provide additional evidence that a single common mechanism, namely beta-adrenergic mediated activation of adenylyl cyclase, underlies intracellular cAMP accumulation, cAMP transport, and extracellular adenosine accumulation. It appears that regulation of extracellular adenosine levels via cAMP transport and extracellular hydrolysis to adenosine may be a final common pathway of neuromodulation in cerebral cortex for catecholamines, and, indeed, any substance whose receptors are coupled to adenylyl cyclase.  相似文献   

9.
10.
It has been postulated that delayed facilitation of norepinephrine release by epinephrine is causally related to the development of hypertension. It has been proposed that a brief increase in epinephrine concentrations results in the uptake of epinephrine into the sympathetic nerve terminal. Subsequent rerelease of epinephrine stimulates presynaptic beta-adrenergic receptors, resulting in a prolonged increase in plasma norepinephrine (NE) concentrations, with amplified sympathetic responses and vasoconstriction. To determine whether such epinephrine-induced, delayed facilitation of NE release occurs in a vascular bed draining resistance vessels and, if it occurs, whether that facilitation differs in hypertension, we used a radioisotope dilution method to measure unstimulated and isoproterenol-stimulated forearm NE spillover before, during, and after a 50 ng/min infusion of epinephrine for 30 minutes directly into the brachial artery. No delayed facilitatory effects of epinephrine on forearm NE spillover were observed in either 6 normotensive (NT) or 8 borderline hypertensive (BHT) subjects (NT unstimulated forearm NE spillover preepinephrine 1.79+/-0.41 ng/min versus postepinephrine 2.36+/-0.65 ng/min, P=.38; BHT preepinephrine 2.24+/-0.70 ng/min versus postepinephrine 1.93+/-0.46 ng/min, P=.51; NT isoproterenol-stimulated forearm NE spillover preepinephrine 4.61+/-1.01 ng/min versus postepinephrine 4.4+/-0.98 ng/min, P=.9; BHT preepinephrine 4.04+/-1.36 ng/min versus postepinephrine 4.69+/-1.49 ng/min P=.5). We conclude that the short-term local infusion of epinephrine does not have a delayed facilitatory effect on forearm NE spillover in NT or BHT subjects. Therefore, the prolonged increase in NE concentrations after epinephrine infusion previously shown systemically, and not seen locally in the forearm, suggests that the delayed facilitatory response to epinephrine may occur in other organs.  相似文献   

11.
1. The effects of L-arginine treatment on dexamethasone-induced hypertension were examined in the Sprague-Dawley rat. Seventy rats were randomly divided into the following eight groups: sham, dexamethasone (5 and 10 micrograms/day, L-arginine (100 and 500 mg/kg per day), L-arginine (100 or 500 mg/kg per day) + dexamethasone (10 micrograms/day), L-arginine (520-797 mg/kg per day in food) + dexamethasone (5 micrograms/day). Systolic blood pressure (SBP), bodyweight and plasma nitrate/nitrite concentration were measured. 2. Dexamethasone (5 and 10 micrograms/day) increased SBP in both sham and L-arginine-treated rats. Dexamethasone at 10 micrograms/day decreased bodyweight, but did not alter plasma nitrate/nitrite concentrations. 3. L-Arginine (500 mg/kg per day, i.p.) increased plasma nitrate/nitrite concentrations in 10 micrograms/day dexamethasone-treated rats. L-Arginine did not alter blood pressure in either sham or dexamethasone-treated rats. 4. Dexamethasone-induced hypertension differs from adrenocorticotropic hormone (ACTH)-induced hypertension in the rat in that it is not modified by L-arginine. Thus, ACTH-induced hypertension cannot be explained simply in terms of glucocorticoid activity.  相似文献   

12.
Previous reports have suggested that gonadotropins, estradiol, and prostaglandin F2 alpha (PGF2 alpha) have varying effects on progesterone and oxytocin synthesis or secretion in cultured granulosa and luteal cells collected at different stages of the estrous cycle. The experiments reported here were designed to investigate whether effects of these agonists on secretion of hormones and their coupling to second messenger systems changed around the time of ovulation. Granulosa cells and Day 2 luteal cells of the ewe were cultured for three days and then treated for 30 min with varying doses of PGF2 alpha, LH, or estradiol. LH increased intracellular cAMP at both stages, but granulosa cells were more responsive in terms of both minimum effective dose (10 compared with 100 ng/ml) and degree of stimulation. LH caused no change in intracellular inositol phosphate levels. Both granulosa and early luteal cells responded to LH treatment by an increase in progesterone output in a dose-responsive fashion. PGF2 alpha increased inositol phosphate accumulation in cells collected at both stages of the cycle. All doses tested (10(-6)-10(-8) M) stimulated the release of oxytocin into the culture medium from both granulosa and luteal cells. Progesterone secretion was also increased, but only at the highest dose (10(-6) M). Estradiol treatment (10(-6) M) did not affect either the inositol phosphate or cAMP second messenger systems, but it did inhibit the secretion of oxytocin from granulosa cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
1. The present study investigated the time-dependent inhibitory responses of endometrial growth and inducible nitric oxide synthase (iNOS) to dexamethasone during deciduoma development that was surgically induced on day 4 of pseudopregnancy (PG). 2. Groups of rats (n = 6) were subcutaneously injected with dexamethasone (1.5 mg/rat per day) for 3 days (PG days 1-3, 4-6, 7-9, 10-12 and 12-15). Rats in each group were killed on the last injection day. 3. Dexamethasone produced comparable temporal inhibitory changes in endometrial growth (wet weight, protein and DNA concentrations; P<0.0001) and in iNOS activity (130 kDa protein band), which peaked after PG days 4-6 and 7-9 pretreatments. 4. Endometrial matrix metalloproteinases (72 and 92 kDa) activity profiles displayed maximal reductions (36 and 53%, respectively) following PG days 4-6 pretreatment. Serum progesterone levels were equally (P<0.0001) but asynchronously inhibited by dexamethasone on PG days 9 and 12. 5. Dexamethasone inhibition of endometrial growth and in situ iNOS was most pronounced during decidual development (PG days 4-9). Minor reductions in these endometrial parameters occurred before deciduoma induction (PG days 1-3) and during deciduoma regression (PG days 10-15). 6. These results indicate that, in the endometrium, the iNOS/endogenous nitric oxide system may be linked to the biochemical and metabolic mechanisms responsible for the developmental responsiveness of the deciduoma to dexamethasone exposure. These time-dependent changes in endometrial growth and iNOS apparently were not mediated by progesterone.  相似文献   

14.
To determine whether rat osteoblasts synthesize proteins of the annexin family and to evaluate the extent to which glucocorticoids modulate the expression of annexins by these cells, osteoblasts were grown in primary cultures in the absence or presence of dexamethasone, and the expression of annexins was evaluated by immunoblotting using polyclonal antibodies against human annexins. Four different annexins (I, II, V, and VI) were found to be expressed by rat osteoblasts. The expression of annexin I, but not the other annexins studied, was increased in osteoblasts cultured in the presence of dexamethasone (173 +/- 33% increase comparing untreated cells and cells treated for 10 days with 5 x 10(-7) M dexamethasone). Increased expression of annexin I was observed after the third day of exposure to dexamethasone and rose thereafter until day 10; annexin I expression increased with dexamethasone concentrations above 10(-10) M throughout the range of concentrations studied. The increase in annexin I protein was associated with an increase in annexin I mRNA and was completely blocked by the concomitant addition of the glucocorticoid receptor antagonist RU 38486. The increase in annexin I content following dexamethasone treatment was associated with an increase in alkaline phosphatase activity and PTH-induced cAMP stimulation, whereas phospholipase A2 activity in the culture medium was reduced to undetectable levels. The finding that four annexins are expressed in rat osteoblasts in primary culture raises the possibility that these proteins could play an important role in bone formation by virtue of their ability to bind calcium and phospholipids, serve as Ca2+ channels, interact with cytoskeletal elements, and/or regulate phospholipase A2 activity. In addition, the dexamethasone-induced increase in annexin I may represent a mechanism by which glucocorticoids modify osteoblast function.  相似文献   

15.
Complementary DNA encoding a rat bone PTH/PTHrP receptor was stably expressed in the murine corticotroph cell line, AtT-20. Several clones, expressing variable numbers of PTH/PTHrP receptors, were developed. In contrast to the relatively low binding affinity (apparent Kd = 15 nM) observed in COS-7 cells transiently expressing the PTH/PTHrP receptor, all AtT-20 stable transfectants bound [Nle8,18,Tyr34]bPTH(1-34)NH2 (NlePTH) with an affinity that was indistinguishable from that observed in ROS 17/2.8 cells expressing native PTH/PTHrP receptors. Additionally, NlePTH dramatically increased cAMP accumulation and ACTH release in AtT-20 cells expressing the PTH/PTHrP receptor with an ED50 of 0.6 +/- 0.3 and 0.3 +/- 0.1 nM, respectively. The high binding affinity and the high efficacy of NlePTH in stimulating cAMP accumulation and ACTH release indicate that the PTH/PTHrP receptor is efficiently coupled to the intracellular signalling system responsible for stimulation of ACTH release in AtT-20 cells. No additivity of cAMP accumulation or of ACTH release was observed when these cells were treated with maximally active concentrations of both NlePTH and CRF. This suggests that the receptors for both of these hormones share the same intracellular effectors, and that intracellular signaling in AtT-20 cells is not compartmentalized. Additionally, the ability of NlePTH to stimulate ACTH release in AtT-20 cells, a function that is normally performed by CRF, demonstrates promiscuity between activated receptors and distal biological functions.  相似文献   

16.
The sympathetic nervous system plays a role in the regulation of thyroid function. In FRTL-5 rat thyroid cells, norepinephrine (NE) acutely depresses intracellular I- by increasing I- efflux. The present study was undertaken to determine the effect of NE on iodide transport after a longer time period. NE inhibited the ability of thyrotropin (TSH) to induce iodide uptake by FRTL-5 cells after 48 or 72 hours, but not after 24 hours. The effect of NE was more evident with increasing concentrations of TSH. NE did not modify the rate of I- efflux. Inhibition was associated with a decrease in the Vmax and no change in the Km for iodide influx. To determine if this was a generalized effect of NE on thyroid cell membrane, the uptake of alpha-aminoisobutyric acid (a nonmetabolizable aminoacid) and of 2-deoxyglucose was measured. NE did not inhibit TSH stimulation of the uptake of the two compounds. NE inhibited the action of dibutyryl cAMP (dbcAMP) on iodide uptake in a similar manner to TSH, but did not alter the cyclic adenosine monophosphate (cAMP) levels increased by TSH. The effects of different adrenoreceptor agonists and antagonists demonstrated that norepinephrine acts through an alpha1-adrenergic receptor.  相似文献   

17.
In order to develop a new in vitro skin model multicellular floating hetero-spheroids were prepared by culturing keratinocytes and fibroblasts on hydrophilic culture dishes coated with type I collagen and a thermo-responsive polymer. Upon decreasing the substratum's temperature to an ambient temperature, the spheroids detached from the substratum and were thereafter maintained in either: Medium I, a medium mixture of keratinocyte growth medium (KGM) and supplemented Dulbecco's modified Eagle's medium (DMEM) at a ratio of 1 to 2; or medium II, KGM for the initial 24 h followed by supplemented DMEM for the remainder of the culture periods. The spheroids displayed a typical pattern of an external rim of keratinocytes with an internal core of fibroblasts. A minute space separated the keratinocytes and fibroblasts. The stratification of cells cultured in medium II was more prominent than that of the cells cultured in medium I. Markers of the advanced stages of keratinization such as keratohyalin granules, membrane coating granules and the cornified envelope were not observed. Interestingly, keratinocytes underwent the same differentiation pathway as non-keratinized stratified epithelia such as esophagus. With consideration to keratinocyte-fibroblast interactions, it may be of interest to incorporate the study of such morphological impairments when investigating the effects of growth factors and their ligands.  相似文献   

18.
19.
The direct role of hormones on leptin synthesis has not yet been studied in cultured adipose cells or tissue from lean and obese subjects. Moreover, this hormonal regulation has never been addressed in human visceral fat, although this site plays a determinant role in obesity-linked disorders. In this study, we investigated the hormonal control of ob expression and leptin production in cultured visceral adipose tissue from lean and obese subjects. We more particularly focused on the interactions between glucocorticoids and insulin. We also briefly tackled the role of cAMP, which is still unknown in man. Visceral (and subcutaneous) adipose tissues from eight obese (body mass index, 41 +/- 2 kg/m2) and nine nonobese (24 +/- 1 kg/m2) subjects were sampled during elective abdominal surgery, and explants were cultured for up to 48 h in MEM. The addition of dexamethasone to the medium increased ob gene expression and leptin secretion in a time-dependent manner. Forty-eight hours after dexamethasone (50 nmol/L) addition, the cumulative integrated ob messenger ribonucleic acid (mRNA) and leptin responses were, respectively, approximately 5- and 4-fold higher in obese than in lean subjects. These responses closely correlated with the body mass index. The stimulatory effect of the glucocorticoid was also concentration dependent (EC50 = approximately 10 nmol/L). Although the maximal response was higher in obese than in lean subjects, the EC50 values were roughly similar in both groups. Unlike dexamethasone, insulin had no direct stimulatory effect on ob gene expression and leptin secretion. Singularly, insulin even inhibited the dexamethasone-induced rise in ob mRNA and leptin release. This inhibition was observed in both lean and obese subjects, whereas the expected stimulation of insulin on glucose metabolism and the accumulation of mRNA species for the insulin-sensitive transporter GLUT4 and glyceraldehyde-3-phosphate dehydrogenase occurred in lean patients only. This inhibitory effect was already detectable at 10 nmol/L insulin and was also observed in subcutaneous fat. Although a lowering of intracellular cAMP concentrations is involved in some of the effects of insulin on adipose tissue, this cannot account for the present finding, because the addition of cAMP to the medium also decreased ob mRNA and leptin secretion (regardless of whether dexamethasone was present). In conclusion, glucocorticoids, at physiological concentrations, stimulated leptin secretion by enhancing the pretranslational machinery in human visceral fat. This effect was more pronounced in obese subjects due to a greater responsiveness of the ob gene and could contribute to the metabolic abnormalities associated with central obesity by para/endocrine actions of hyperleptinemia on adipocytes and liver. Unlike dexamethasone, insulin had no direct stimulatory effect on ob gene expression and leptin secretion, and even prevented the positive response to dexamethasone by a cAMP-independent mechanism that remained functional despite insulin resistance.  相似文献   

20.
The activation of neurotransmitter release in nerve cells appears to be primarily dependent upon influx of extracellular Ca2+, most of which is thought to cross nerve terminal membranes through N-type Ca2+ channels. Events in skeletal and cardiac muscle, in contrast, are regulated to a greater extent by intracellular Ca2+ exchange between cytosol and intracellular organelles such as sarcoplasmic reticulum. It is not known to what extent corresponding intracellular organelles, i.e. endoplasmic reticulum (ER), contribute to cytosolic Ca2+ transients and norepinephrine (NE) release from cardiac sympathetic nerves. Heart rate and NE release were measured in isolated perfused guinea pig hearts during 1-min stimulations (5 V, 4 Hz, 2 ms) of the right stellate ganglia prior to (S1), during the administration of (S2), and after (S3) the removal of ryanodine (1 microM) from the perfusate. Ryanodine is a selective modulator of caffeine-sensitive Ca2+ stores in ER. Baseline heart rates decreased significantly in the presence of ryanodine, documenting its physiological effect on cardiac cells. However, there was no detectable effect of ryanodine on nerve-stimulated increase in heart rate or NE release. These results indicate that the ryanodine-sensitive intracellular Ca2+ stores do not play a major role in cardiac sympathetic neurotransmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号