首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
铬渣中六价铬浸出方法对比实验研究   总被引:2,自引:0,他引:2  
铬渣是一种环境污染极大的工业废渣,其中的六价铬是国际公认的致癌物,但如何科学评价铬渣中六价铬的含量及其危害性却很困难。通过实验对比了4种标准方法(USEPA 3060A、HJ/T 299-2007《固体废物 浸出毒性浸出方法 硫酸硝酸法》、HJ/T 300-2007《固体废物 浸出毒性浸出方法 醋酸缓冲溶液法》和GB 5086.2-1997《固体废物 浸出毒性浸出方法 水平振荡法》)对铬渣中六价铬的浸出效果,还比较了恒定pH条件下不同酸液及组合两步浸取的浸出效果。实验结果表明,标准的酸液浸出法难以有效浸出铬渣中的六价铬,除非破坏铬渣中的物相结构,否则任何浸出方法都无法完全浸出铬渣中的六价铬。  相似文献   

2.
针对中科院过程所开发的铬铁矿液相氧化生产铬酸钾工艺过程中产生的一种含铬固体废物,采用硫酸铵、硫酸钠、氯化铵、氯化钠及其混合水溶液浸取的方法对其进行解毒处理。利用配方实验设计方法,通过间歇浸取实验表明,这些盐溶液对该铬渣中的六价铬浸取效果并无明显差别,效果与USEPA Method 3060A碱浸取方法相当。进一步用均匀设计方法考察了浸取时间、硫酸铵浓度以及浸取温度对浸取效果的影响,结果表明,硫酸铵最佳浓度约为1.5 mol/L,六价铬浸取量随温度升高而明显增大。  相似文献   

3.
本文比较了水、碱性水溶液、酸性水溶液三种标准方法对铬渣中六价铬的溶出效果,结果表明,USEPA3060A标准方法溶出率最高,GB5086.1-1997标准水法与HJ/T299标准酸法溶出率相近,三种方法溶出率都与铬渣粒径有关.  相似文献   

4.
为了确保危险废物(铬渣)处理的有效性,防止发生环境污染事件,采用回转窑干法解毒—填埋场填埋处理工艺对铬渣进行处理。结果表明:经回转窑干法解毒工艺处理后,总铬、六价铬均能满足《固体废物浸出毒性浸出方法硫酸硝酸法》(HJ/T 299—2007)制备的浸出液中危害成分的浓度限值为:总铬9 mg/L、六价铬3 mg/L的要求,本治理工程实施后通过土壤污染防治的广泛宣传,不断提高人民群众生态环境意识,将有力推进全市的生态文明建设工作,为工程实践中铬渣处理提供了新思路。  相似文献   

5.
铬渣因含有大量六价铬而具有毒性,需对其进行解毒处理.用煤与铬渣反应解毒时,由于灼烧后煤变成了二氧化碳,留下大量的孔隙,同时由于煤不完全燃烧,也留下了大量的活性炭成分.这些物质不仅具有较强吸附性,而且还有一定的还原性.若用常规方法浸取分析煤处理后铬渣中的六价铬含量,六价铬会被吸附或被还原,从而使铬渣中的六价铬检测结果偏低,或者不能被检出.在实验的基础上,提出用异戊醇萃取六价铬后进行测试,以减少测试过程中的干扰,使分析结果更为科学、可靠,为铬渣解毒效果判别提出了更为科学合理的方法.  相似文献   

6.
治理铬渣的两个关键   总被引:8,自引:2,他引:8  
铬渣中存在的酸溶性六价铬是解毒效果能否持久的关键,而铬渣中游离氧化镁消化是利用铬渣作建筑材料时必须高度重视的问题,论述了湿法解毒、高温解毒和非熔融的综合利用法等方法,对铬盐行业的铬渣治理有指导作用。  相似文献   

7.
酸浸-生物法处理铬渣   总被引:4,自引:0,他引:4  
采用酸浸-生物法处理铬渣以进行有效的还原解毒. 首先分析了铬渣的物相和组成,然后鼓入CO2进行酸浸,再结合硫酸盐还原菌浸取和还原. 结果表明,经过生物反应36 h后,残渣中水溶性六价铬含量降到了2 mg/kg,达到了铬盐工业污染物排放标准GB4280-84的要求.  相似文献   

8.
研究了铬铁渣中水溶性六价铬的浸取条件,确定了最佳的浸取条件:去离子水与铬铁渣的质量比为8,温度为80 ℃,采用回旋振荡方式,振荡频率为150 r/min,浸取时间为5 h。在此条件下测得的水溶性六价铬的量为每克铬铁渣中含2.78 μg,含量极低。确定铬铁渣中水溶性铬的浸出条件对评价铬铁渣对环境的危害提供了实验依据。  相似文献   

9.
通过对湿法解毒铬渣填埋后渗滤液进行监测,了解铬渣通过湿法解毒填埋后所渗出的渗滤液p H和六价铬特征,以反应填埋铬渣中六价铬含量情况。结果表明:渗滤液p H值在7.0~9.0之间,呈碱性,六价铬浓度值小于0.5 mg/L。  相似文献   

10.
纪柱 《铬盐工业》2009,(2):36-47
铬渣是铬铁矿高钙焙烧工艺排放的废渣,含有许多Cr^3+和Cr^6+,其pH值在11和12之间。用于修复被六价铬污染的土壤和废水的硫酸亚铁,将六价铬还原为三价铬,然后生成氢氧化铁/氢氧化铬沉淀,故硫酸亚铁也已用于铬渣中六价铬的解毒。尽管如此,如果将硫酸亚铁加到实验用的铬渣柱渗透液(浸取液)中,则会大大增加六价铬的浸出量。使用25倍孔体积浓度为20mM的FeSO4渗透液,浸出的六价铬由3.8增至12.3mmol/kg铬渣,致溶液浓度达到1.6mM。Fe^2+进入铬渣柱后由于铬渣的高pH值而沉淀为氢氧化亚铁,故Fe^2+对六价铬还原为三价铬不起作用,溶液中的六价铬随浸出液流出。硫酸盐(FeSO4或Na2SO4)渗透液浸出的六价铬大量增加,是由于层状双氢氧化物矿物水铝钙石夹层内的铬酸根被硫酸根取代,此结论已为扫描电子显徼镜一能量散射X-射线微量分析直接证实。  相似文献   

11.
铬渣是铬盐生产过程中产生的废渣,含有大量的水溶性和不溶性六价铬[Cr(Ⅵ)],对人类和生态环境均有很大危害。提出了铬渣与农业废弃物柑桔皮进行混合热解,利用柑桔皮热解产生的还原性气体及生物质炭将Cr(Ⅵ)还原为无毒的三价铬[Cr(Ⅲ)]。系统研究了热解温度、柑桔皮与铬渣质量比、热解时间和球磨时间等条件对铬渣中总Cr(Ⅵ)、水溶性Cr(Ⅵ)和难溶性Cr(Ⅵ)还原去除率的影响规律。得到较佳的实验参数:热解温度为600 ℃,柑桔皮与铬渣的质量比为30%,热解时间为45 min,球磨时间为1 h。在最佳条件下,铬渣中总Cr(Ⅵ)的还原去除率达到99.51%,其含量由1 641.95 mg/kg降低到8.04 mg/kg,远低于25 mg/kg的国家排放标准(HJ/T 301—2007《铬渣污染治理环境保护技术规范》)。并对解毒后的铬渣进行了X射线衍射(XRD)分析,结果表明铬渣热解解毒前后物相一致。该研究结果可为无钙焙烧铬渣的无害化处理提供新的技术思路。  相似文献   

12.
方露  黄萧 《硅酸盐通报》2021,40(8):2631-2639
利用铅锌冶炼渣(LZSS)制备碱激发材料并固化铬渣(COPR)来实现废物共处理。通过单因素试验和正交试验探讨了碱含量、水玻璃模数、液固比和初始养护温度对碱激发LZSS强度的影响。基于上述试验,利用碱激发LZSS固化铬渣,并通过抗压强度和重金属浸出评价铬渣固化体的性能。结果表明:碱含量为2.5%(质量分数,下同),水玻璃模数为1.5,液固比为0.19,初始养护温度为35 ℃时,碱激发LZSS的最高抗压强度达到84.49 MPa;随着铬渣掺量的增加,铬渣固化体的抗压强度逐渐下降;铬渣掺量为40%(质量分数)时固化体强度降低至1.42 MPa;铬渣固化体(掺量0%~40%)中重金属Zn和Cr的浸出浓度远低于相应标准限值(美国EPA方法1311和中国GB 5085.3—2007),且环境扫描电镜(配备能谱仪)、X射线衍射和傅里叶红外光谱表征结果证明Zn和Cr可以通过化学和物理手段被有效固定。  相似文献   

13.
铬铁矿无钙焙烧渣的SO2还原解毒   总被引:1,自引:0,他引:1       下载免费PDF全文
吴俊  全学军  李纲  鹿存房  罗华政 《化工学报》2018,69(4):1678-1686
系统地对铬铁矿无钙焙烧渣进行了表征,并研究了SO2还原解毒铬渣,提出了机械活化与SO2还原相结合的解毒工艺。结果表明,该铬渣主要物相组成是(Fe,Mg)(Cr,Fe)2O4和MgAlFeO4,铬渣中Cr2O3含量为12.23%,铬渣粒径越小,含有的总Cr(Ⅵ)、水溶性Cr(Ⅵ)、难溶性Cr(Ⅵ)量越小。SO2还原解毒铬渣工艺过程中搅拌能有效强化外扩散过程,液固比增大有利于铬渣中Cr(Ⅵ)的浸出,铬渣中Cr(Ⅵ)的浸出随温度升高先增加后急剧降低,反应体系中压力变化对铬渣还原解毒效果影响不大。优化的SO2还原解毒铬渣条件为:压力0.1 MPa、温度60℃、搅拌速度500 r·min-1、反应时间60 min,此时铬渣中Cr(Ⅵ)的去除率达90%;机械活化90 min的铬渣进行SO2还原解毒60 min后,渣中的Cr(Ⅵ)去除率达到98.1%,含量降至25 mg·kg-1以下,达到国家排放标准。  相似文献   

14.
戴泽军  王乐乐  唐浩  苏胜  杨涛  刘威  许凯  汪一  胡松  向军 《化工进展》2018,37(10):3873-3878
为探讨废弃选择性催化还原(SCR)催钒钛系催化剂中重金属的浸出毒性及其浸出特性,收集了山东某电厂的废弃SCR催化剂进行实验。采用固体废弃物毒性浸出方法硫酸/硝酸法(HJ/T299-2007)进行废弃SCR催化剂毒性浸出实验,同时开展了不同溶液pH、不同浸出时间和不同液固比(L/S)下废弃SCR催化剂中重金属浸出特性的实验研究。结果表明:废弃钒钛系SCR催化剂有一定的重金属浸出毒性,其中V和Zn的浸出浓度偏高,分别为13.8mg/L和2.1mg/L;pH对重金属的浸出影响显著,强酸对Cr、Ni、Cu和Zn的浸出有促进作用,V在强酸强碱环境下(pH<3或pH>11)容易释放;V、Cr、Ni和Cu主要在浸出过程的前2h内释放,18h时释放率都已高达96%以上,18h后这4种重金属浸出基本完成,而Zn在浸出18h后仍有6%释放,浸出周期相对较长;室温下加大液固比对废弃催化剂中V的浸出仅起稀释作用;Cr、Ni、Cu和Zn的溶出在液固比(L/S)<30时受溶解度的影响,L/S>30时被稀释。  相似文献   

15.
铬渣是铬铁矿生产铬盐剩下的尾矿,因含有大量铬铁铝镁元素,也是一种二次资源。采用湿法冶金工艺回收铬渣中铬、铁、铝、镁,以浓盐酸作为浸提剂,考察了液固比、浸出温度以及时间对铬、铁、铝、镁浸出效果的影响。结果表明,最佳浸出条件为:盐酸浓度12 mol·L-1,液固比5.6 ml·g-1,浸出温度110℃,时间6 h,该条件下铬浸出率为67.76%,同时铁铝镁浸出率分别达到89.89%、93.99%和95.21%。铬、铁、铝、镁在铬渣中存在物相不同造成了其浸出率之间的差异。此外,铬、铁、铝、镁浸出过程均符合未反应缩核模型,且主要受界面化学反应控制,其表观活化能分别为102.31、78.10、66.44和81.66 kJ·mol-1。  相似文献   

16.
铬铁矿无钙焙烧工艺是目前世界上铬化工行业的主流生产工艺,该工艺产出的铬渣中铬含量较高且含有六价铬,直接堆存或填埋不仅造成铬资源的浪费,还会污染环境。基于无钙焙烧铬渣的组成特点,提出了“酸浸预处理-钠化氧化焙烧-湿法解毒”的处理方法,确定了较优的工艺参数,分析了方案的可行性。研究结果表明,无钙焙烧铬渣通过两级酸浸预处理除杂,提高了铬的品位;酸浸渣经过氧化焙烧,实现了铬的深度提取;全流程铬的提取率最高达到73%以上,尾渣中氧化铬质量分数降至5.60%;尾渣经湿法解毒处理,浸出毒性满足进入一般工业固体废物填埋场填埋的污染控制指标限值的要求。该研究结果可为无钙焙烧铬渣的深度提铬和无害化处理提供新的技术思路。  相似文献   

17.
以我国某铬盐厂的两种不同污染特性铬渣污染土壤(A土和B土)为研究对象,探讨了三种异位修复工艺(淋洗、稳定化、湿法解毒)去除铬渣污染土壤中总Cr和Cr(Ⅵ)的效果,并采用改进BCR顺序提取法分析了不同修复工艺对土壤中各形态Cr的去除效果。实验结果表明,三种异位修复工艺对铬污染土壤中Cr(Ⅵ)的去除效果为湿法解毒 > 稳定化 > 淋洗,湿法解毒工艺对A土、B土中Cr(Ⅵ)的去除率分别高达83.26%、92.94%;对铬污染土壤总铬去除效果最佳的是异位淋洗工艺,异位淋洗工艺对A土、B土总铬消减分别达54.87%、80.16%。异位淋洗工艺实现了对水溶态Cr(Ⅵ)、酸溶态Cr(Ⅵ)的泥水分离,是总铬消减的主要原因;稳定化工艺和湿法解毒工艺降低了土壤pH,促进了水溶态Cr、酸溶态Cr及可还原态Cr向可氧化态Cr的转化,因此土中总Cr并未发生显著消减。高浓度铬渣污染土壤经三种异位修复工艺处理后,A土Cr(Ⅵ)仍然残留736.6 mg·kg-1,B土Cr(Ⅵ)仍然残留245.47 mg·kg-1,酸溶态Cr的残留是导致三种工艺修复Cr(Ⅵ)效果受限的主要原因。  相似文献   

18.
用表面活性剂和硫酸盐还原菌(SRB)淋洗Cr污染土壤,采用欧洲共同体参考物机构连续提取法分析淋洗前后土壤中铬化学形态和相对含量的变化. 结果表明,阴离子表面活性剂十二烷基苯磺酸钠和非离子表面活性剂Tween-80浓度分别为5.0, 0.01 g/L时,对土壤中Cr的淋洗效果最好,当土壤中Cr含量为200 mg/kg时,淋洗率分别为14.70%和24.74%,500 mg/kg时,淋洗率为35.99%和41.42%;反应体系中菌液量为10 mL时,淋洗18 h上清液中Cr6+转化率最大,分别为98.07%和94.73%;用表面活性剂和SRB共同处理Cr污染土壤,上清液中Cr6+可全部转化为Cr3+,未被淋洗出的Cr从较易被植物利用的可交换态转化为稳定态,主要以Cr2(CO3)3和Cr(OH)3存在于土壤中,达到了土壤环境质量标准.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号