首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 390 毫秒
1.
研究了焙烧填料贮存期对铬铁矿无钙焙烧过程的影响。结果表明,无钙焙烧浸出渣经分选后粗渣作为氧化焙烧填料时,填料的焙烧活性及填料性能随贮存期的延长而提高。在相同配料及焙烧条件下,随着填料贮存期的延长,氧化焙烧熟料中游离碱含量降低、水溶铬含量升高,回转窑的稳定运行时间增长。结合无钙焙烧生产铬盐的工业实践,填料的贮存风化期以6~8个月为宜。  相似文献   

2.
纪柱 《铬盐工业》2006,(2):13-25
自1761年发现含铬的红铅矿(后来证明其组成为铬酸铅PbCrO4)及1797年确定铬是一种新元素之后,1808年英国首先在曼彻斯特建成铬盐厂。自此,铬盐生产一直沿用碱性氧化焙烧工艺。焙烧熟料浸取过滤后的残渣称为铬渣。为防止焙烧炉内结圈,炉料中加入了惰性填料。因填料是否含钙,焙烧工艺分为有钙焙烧和无钙焙烧。由于无钙焙烧铬渣易于综合利用,本文仅讨论有钙焙烧铬渣,以下简称铬渣。过去,英、美、俄等大多数国家对铬渣处置主要采取未经解毒直接填埋.  相似文献   

3.
以南非铬铁矿为处理对象,研究了一种添加剂对铬铁矿氧化焙烧过程的影响。考察了配碱率(碳酸钠实际用量与理论用量的比值)、添加剂用量(添加剂占铬铁矿的质量分数)、焙烧温度、焙烧时间等因素对焙烧熟料浸出过程中铬、铝浸出率的影响。结果表明,添加剂的引入能够显著促进铬铁矿的氧化分解,明显降低焙烧温度,同时有效地抑制焙烧熟料中铝的浸出。在配碱率为1.1、添加剂用量为30%、焙烧温度为950 ℃、焙烧时间为2.5 h条件下,焙烧熟料中铬的浸出率达到98%、铝的浸出率降至24%,铬渣中氧化铬质量分数约为1%。  相似文献   

4.
铬盐作为重要的工业基础原料,在各行业中应用非常广泛,但其生产过程中污染问题突出,迫切需要开发清洁的生产工艺。简要叙述了国内外铬盐工业的发展过程及现状,详细分析了有钙焙烧、无钙焙烧和亚熔盐法等传统铬铁矿为原料生产铬盐工艺的优缺点。根据当前行业发展局势和所面对的环境问题,还介绍了铬铁为原料的铬盐清洁生产工艺的优缺点和研究进展。该系列工艺因“三废”排放少且易于控制而备受关注,其研究进展显著。  相似文献   

5.
铬铁矿无钙焙烧的反应机理   总被引:4,自引:3,他引:1  
研究了铬铁矿无钙焙烧反应机理,得出配碱量高低及有无填料对氧化速度、硅铝的副反应均有显著影响;少碱和足碱焙烧的活化能分别为50.3及73.2kJ/K.mol。  相似文献   

6.
铬渣是由钙焙烧法生产铬盐过程中产生的含Cr(VI)的废渣,主要是铬盐行业及少数金属铬企业在生产过程中采用铬铁矿、纯碱和钙质填料按一定比例混合,经高温煅烧、水浸取重铬酸钠后的残渣。铬渣为有毒废渣,呈黄、黑、赭等颜色,我国铬盐生产原料、工艺流程和操作条件基本相似,铬渣的基本组成如表1所示。  相似文献   

7.
一、概况目前铬盐生产铬铁矿焙烧工艺基本上是一致的,即铬铁矿与纯碱及白云石、碳酸钙、铬渣等填充料混和,于1000~1150℃温度下进行氧化焙烧制取铬酸钠。矿石焙烧转化率及炉料物理性能除与焙烧工艺条件有关外,尚取决于炉料的准确配制与均匀混和,即计量准确度及混和均匀度。工业生产一般以炉料中Na_2CO_3含量或Cr_2O_3  相似文献   

8.
纪柱 《无机盐工业》2014,46(12):1-7,11
根据已公布的专利、论文等,综述了中国铬酸钠新技术的开发现状,包括铬铁矿无钙焙烧法的工业化及发展与创新、铬铁矿湿法冶金、以碳素铬铁为原料生产铬酸钠、铬铁矿酸溶氧化法,并对各种方法的优点和缺点以及发展前景进行了讨论。介绍其中的无钙焙烧法的工业化及发展与创新,包括:无钙焙烧法的工业化;无钙焙烧法的完善与新创意(包括:反应器的改进和工艺流程的变化、中和法的改进、铝泥的利用、脱钒、两煅焙烧、预热后配碱、铬渣处理、飞灰回收利用);少碱焙烧法、铬酸钠-碳素铬铁联产法;应用催化剂;氧气焙烧。  相似文献   

9.
近来,有效利用低品位铬铁矿的无公害工艺——湿式氧化水热法引起人们注意,特别是高压气体处理硫化矿的方法被实用以后,加速了研究进程。众所周知,由铬矿制铬盐的主要方法是氧化焙烧法、即铬矿、碳酸钠和石灰一起在转炉内氧化焙烧至1000℃以上,  相似文献   

10.
汤培平 《化工设计》2004,14(2):40-42,36
经工艺实验证实无钙焙烧生产红钒钠新工艺应用于我国铬盐生产行业 ,可从根本上改变铬盐生产对环境的严重污染。预测 1 0kt/a无钙焙烧生产红钒钠新工艺生产装置的建设投资、产品吨耗、外排废物量等数据。  相似文献   

11.
对铬盐无钙焙烧渣进行加压硫酸浸出,考察了硫酸浓度、反应温度、铬酸酐加入量、反应时间、铬渣粒度对铬渣硫酸浸出效果的影响. 结果表明,焙烧渣主要物相组成为:铬铁矿(FeCr2O4)和镁铁矿[Mg(Fe,Al)2O4]等尖晶石类矿物含量为73.11%,赤铁矿(a-氧化铁)为12.42%,钠霞石(NaAlSiO4)为10.02%. 铬高效溶出的最佳工艺条件为:硫酸浓度65%(w),反应温度120℃,铬酸酐加入量为铬渣质量的10%,反应时间2 h,搅拌转速500 r/min,该条件下溶出率可达97.93%. 尾渣以硅物相为主,SiO2含量为80.8%. 浸出过程符合收缩未反应核模型,反应表观活化能为16.38 kJ/mol,反应速率为外扩散和化学反应混合控制.  相似文献   

12.
钒渣钙化焙烧参数对钒浸出率的影响   总被引:2,自引:0,他引:2  
在分析钒渣(V2O3 8.07%)钙化焙烧过程反应机理的基础上,采用钙化焙烧-酸浸法研究了钙化焙烧过程中CaO/V2O3(质量比)、焙烧温度、焙烧时间对钒浸出率的影响. 结果表明,焙烧温度在600~900℃之间时,V2O5等钒氧化物可与CaO发生反应,形成以CaV2O6, Ca3V2O8, CaV3O7为主的钒酸钙. 当CaO/V2O3由0.48提高到约1.125时,钒浸出率由55.3%提高到69.2%,当CaO/V2O3>1.125时,钒浸出率开始下降. 焙烧温度由750℃提高到825℃时,钒浸出率由56.3%提高到69.7%,温度进一步升高,物料开始烧结,浸出率逐渐下降. 随焙烧时间延长,钒浸出率逐渐提高,2 h后达最大;时间继续增加,钒浸出率会因物料间发生二次反应而下降.  相似文献   

13.
采用硫酸铵焙烧-水浸法回收二次铝灰中的铝是实现其无害化与资源化最重要的途径之一。二次铝灰的无害化与资源化利用要求尾渣氟的浸出毒性满足国标要求(无机氟化物质量浓度低于100 mg/L)。二次铝灰中氟的浸出毒性远高于100 mg/L,故需深入研究二次铝灰硫酸铵焙烧-水浸提铝过程氟的迁移规律。借助复合氟离子电极、XRD、XPS、SEM和XRF研究了二次铝灰硫酸铵焙烧-水浸提铝过程氟的迁移转化行为。结果表明,延长焙烧时间、提高焙烧温度、增大硫酸铵配比可促进二次铝灰中的氟进入焙烧尾气;延长浸出时间、提高浸出温度、增大液固比有利于降低浸出渣中氟的含量和占比。在焙烧温度450℃、焙烧时间2 h、物料配比6:1、浸出温度85℃、浸出时间80 min、液固比6:1条件下,二次铝灰中43.85%的氟以气态形式进入尾气,23.92%的氟进入浸出液中,32.23%的氟以AlF3和AlF3?3H2O形式残留在浸出渣中。焙烧尾气经脱氟、喷淋吸收,可转化为硫酸铵;浸出液脱氟后可制备聚合硫酸铝,用作水处理剂;浸出渣的浸出毒性符合国家标准,可用作建筑材料,从而实现二次铝灰的资源化与无害化处理。  相似文献   

14.
针对当前废稀土荧光粉综合回收利用率低、不当处理造成环境污染严重等问题,采用硫酸化焙烧?水浸法处理废稀土荧光粉,考察了焙烧温度对物料形态的影响及焙烧温度、浓硫酸添加量对稀土氧化物浸出效果的影响,并对该工艺进行了初步环保评估。结果表明,在焙烧温度300℃、时间120 min、浓硫酸与废粉质量比为1.85及浸出温度25℃、时间120 min、液固质量比2:1的条件下,4种稀土氧化物的回收率分别为Y2O3 98.82%, Eu2O3 97.39%, CeO2 96.58%和Tb4O7 98.77%。硫酸化焙烧可使稀土分解为可溶性的硫酸盐和磷酸盐,并保证渣为环保的低放渣。浓硫酸添加量对4种稀土氧化物浸出率影响较大,焙烧温度对CeO2和Tb4O7浸出效果影响显著,在浓硫酸与废粉质量比1.85、浸出温度25℃、时间均为120 min的条件下,CeO2和Tb4O7的浸出率分别由焙烧温度200℃时的40.18%和37.18%提高至300℃时的96.58%和98.77%。稀土荧光粉在300℃下焙烧不会产生SO2和SO3等有害气体,焙烧过程中放出的气体主要为水蒸气和挥发的硫酸,物料失重约为10%。该工艺避免了焙烧过程中产生大量含硫、含氟、强酸性废气及难溶解的焙烧废渣,同时减少了环境污染及部分稀土资源浪费,具有广阔的工业应用前景。  相似文献   

15.
Compared with traditional sodium or calcification roasting process for vanadium extraction from raw vanadium slag (V-slag), ammonium sulfate (AS) roasting could reduce about 470℃ roasting temperature and avoid Cl2, HCl, sodium-containing waste-water and waste gypsum discharging. To reduce the amount of AS added in vanadium extraction process, an efficient AS two-stage cyclic roasting and acid leaching process was proposed. The result of TG analysis indicates V-slag could be decomposed in 275-380℃ using AS roasting process. Using 2.03:1 total mass ratio of AS to V-slag, 90.86% V and 80.54% Ti could be extracted after 380℃ roasting for 30 min and 8% initial concentration of H2SO4 leaching at 70℃ for 100 min. XRD analysis indicates V-containing spinel phase in the 1st stage leaching residue would be efficiently decomposed by the cyclic two-stage roasting and leaching process. Furthermore, the valence of V(III) in raw V-slag was not changed after the 1st AS roasting stage, but a part of V(III) in the 1st leaching residue was oxidized to V(V) after 2nd roasting process.  相似文献   

16.
硅质钒矿氧化钙化焙烧提钒新工艺   总被引:21,自引:0,他引:21  
张中豪  王彦恒 《化学世界》2000,41(6):290-292
研究了硅质单一钒矿氧化钙化焙烧提钒新工艺 ,以解决国内各钒厂目前采用的钠化法工艺三废污染严重 ,钒回收率低的问题。介绍和讨论了新工艺的焙烧和浸出原理、工艺流程、各项指标和在生产中的应用。  相似文献   

17.
目前世界铬盐生产中存在着两大类主要的生产工艺,有钙焙烧和少钙或无钙焙烧。研究表明,在两大类焙烧工艺中,熟料转化率都存在着一个上限值,它首先依赖于物料中的渣矿配比。本文对该转化率值作了探讨并说明了其在实际生产中的应用。  相似文献   

18.
为实现准东煤灰的绿色化综合利用,笔者研究设计了从准东煤灰中制取氧化铝和白炭黑的工艺流程,确定了最佳工艺条件,并通过SPSS双变量分析比较不同影响因素对提取率影响程度。试验采用准东煤--将军庙原煤,破碎并用马弗炉模拟煤粉炉静态燃烧方式制取灰样。准东煤灰的成分分析和元素分析表明:SiO2占48.84%,Al2O3占31.26%。参照标准制备灰样,对灰样进行SEM分析,发现粘黏性严重,因此试验前先进行机械研磨。采用煤灰与硫酸铵焙烧法制备氧化铝,工艺分为焙烧过程和酸浸过程。因滤液中含有大量杂质铁、钙等元素,采用pH调节法除杂并对除杂效果进行检验,检验结果为除杂率接近100%。从提铝渣中制备白炭黑分为碱浸过程和多次碳分过程。在提铝工艺焙烧过程中,通过提铝率变化曲线及节能角度确定了各因素的最佳试验条件为:焙烧温度600℃,焙烧时间60 min,焙烧配料比1∶6;在提铝工艺酸浸过程中,得到最佳试验条件为:酸浸温度60℃、酸浸时间20 min、H2SO4浓度0.2 mol/L、酸浸液固比50。从提铝渣制备白炭黑研究中,通过SEM观察到提铝渣疏松多孔,有利于进一步的提硅试验。通过XRD对提铝渣分析,得出提铝渣中含有大量硅、钙元素;用K值法(RIR法)求得提铝渣中Si含量及经提铝后的Si损失率为7.64%。得出碱浸过程最佳试验条件为:碱浸温度60℃、碱浸时间30 min、碱浸NaOH浓度3 mol/L、碱浸液固比70,此时Si提取率为99%。采用多次碳分法进行提硅能够满足不同硅含量纯度要求,得到最佳碱浸工艺条件为碳分pH=9.5、CO2通气速率24 m L/min、碳分NaOH浓度0.2 mol/L、碳分液固比80。通过双变量相关性分析,得到各因素对提铝率、SiO2提取率及H2SiO3沉淀率影响程度大小分别为:焙烧温度>焙烧时间>焙烧配料比,酸浸时间>酸浸温度>H2SO4浓度>酸浸液固比,碱浸液固比>碱浸温度>NaOH浓度>碱浸时间,碳分pH>碳分液固比>碳分NaOH浓度>CO2通气速率。通过经济性及可行性分析,说明提出的工艺能有效实现准东煤灰的绿色化综合利用。从提铝后的滤液中重新提取(NH4)2SO4,实现生产原料的再利用;碳分过程后的Na2CO3溶液可通过加入石灰苛化的方式实现NaOH可循环利用于提取工艺生产;本工艺除生产氧化铝和白炭黑外,还能获得Na2SO4等附加产品。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号