首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Quartz length-extension resonators have already been used to obtain atomically-resolved images by frequency-modulation atomic force microscopy. Other piezoelectric materials such as gallium orthophosphate (GaPO(4)), langatate (LGT), and langasite (LGS) could be appropriate for this application. In this paper, the advantages of langasite crystal are presented and the fabrication of similar microsensors in langasite temperature-compensated cuts by chemical etching is proved. A monolithic length extension resonator, with a tip at its end, is obtained which constitutes a real advantage in regard to the existing quartz devices.  相似文献   

2.
Structural variability and flexibility are crucial factors for biomolecular function. Here we have reduced the invasiness and enhanced the spatial resolution of atomic force microscopy (AFM) to visualize, for the first time, different structural conformations of the two polynucleotide strands in the DNA double helix, for single molecules under near-physiological conditions. This is achieved by identifying and tracking the anomalous resonance behavior of nanoscale AFM cantilevers in the immediate vicinity of the sample.  相似文献   

3.
原子力显微镜微悬臂梁是微纳米领域重要的微力传感器,而微悬臂梁的杨氏模量又是决定其力学性能的重要参数.由于微悬臂梁的尺寸处于微米级,有些特征尺寸甚至达到纳米级,常规的测试结构材料特性的检测方法已经难以满足需求,急需研究新的测试方法和装置对微悬臂梁的机械特性进行研究和分析.本文提出了一种基于微悬臂梁振动固有频率测试的杨氏模量测试方法.使用本方法时,首先建立待测微悬臂梁在空气中的振动模型,并使用数值仿真的方法计算结构尺寸相同但杨氏模量不同的各种微悬臂梁在空气中的振动固有频率,然后实际测量微悬臂梁的振动固有频率,和实验结果最接近的仿真结果所对应的杨氏模量参数就是待测微悬臂梁的杨氏模量.本文最后对Mikromaseh公司生产的NSC型探针的杨氏模量进行了测试,实验结果证实了本文提出的方法的正确性.  相似文献   

4.
A two-dimensional (2D) dopant profiling technique is demonstrated in this work. We apply a unique cantilever probe in electrostatic force microscopy (EFM) modified by the attachment of a multiwalled carbon nanotube (MWNT). Furthermore, the tip apex of the MWNT was trimmed to the sharpness of a single-walled carbon nanotube (SWNT). This ultra-sharp MWNT tip helps us to resolve dopant features to within 10?nm in air, which approaches the resolution achieved by ultra-high vacuum scanning tunnelling microscopy (UHV STM). In this study, the CNT-probed EFM is used to profile 2D buried dopant distribution under a nano-scale device structure and shows the feasibility of device characterization for sub-45?nm complementary metal-oxide-semiconductor (CMOS) field-effect transistors.  相似文献   

5.
We have used frequency-shift cantilever magnetometry to study individual nickel magnets patterned at the end of ultra-sensitive silicon cantilevers for use in magnetic resonance force microscopy (MRFM). We present a procedure for inferring a magnet's full hysteresis curve from the response of cantilever resonance frequency versus magnetic field. Hysteresis loops and small-angle fluctuations were determined at 4.2 K with an applied magnetic field up to 6 T for magnets covering a range of dimensions and aspect ratios. Compared to magnetic materials with higher anisotropy, we find that nickel is preferable for MRFM experiments on nuclear spins at high magnetic fields.  相似文献   

6.
7.
《Materials Characterization》2002,48(2-3):147-152
Soft cantilevers, although having good force sensitivity, have found limited use for investigating materials' nanomechanical properties by conventional force modulation (FM) and intermittent contact (IC) atomic force microscopy. This is due to the low forces and small indentations that these cantilevers are able to exert on the surface, and to the high amplitudes required to overcome adhesion to the surface. In this paper, it is shown that imaging of local elastic properties of surface and subsurface layers can be carried out by employing electrostatic forcing of the cantilever. In addition, by mechanically exciting the higher vibration modes in contact with the surface and monitoring the phase of vibrations, the contrast due to local surface elasticity is obtained.  相似文献   

8.
In this study, we have investigated the performance of liquid-environment FM-AFM with various cantilevers having different dimensions from theoretical and experimental aspects. The results show that reduction of the cantilever dimensions provides improvement in the minimum detectable force as long as the tip height is sufficiently long compared with the width of the cantilever. However, we also found two important issues to be overcome to achieve this theoretically expected performance. The stable photothermal excitation of a small cantilever requires much higher pointing stability of the exciting laser beam than that for a long cantilever. We present a way to satisfy this stringent requirement using a temperature controlled laser diode module and a polarization-maintaining optical fiber. Another issue is associated with the tip. While a small carbon tip formed by electron beam deposition (EBD) is desirable for small cantilevers, we found that an EBD tip is not suitable for atomic-scale applications due to the weak tip-sample interaction. Here we show that the tip-sample interaction can be greatly enhanced by coating the tip with Si. With these improvements, we demonstrate atomic-resolution imaging of mica in liquid using a small cantilever with a megahertz-order resonance frequency. In addition, we experimentally demonstrate the improvement in the minimum detectable force obtained by the small cantilever in measurements of oscillatory hydration forces.  相似文献   

9.
Chen BY  Yeh MK  Tai NH 《Analytical chemistry》2007,79(4):1333-1338
Atomic force microscopy (AFM) probe with different functions can be used to measure the bonding force between atoms or molecules. In order to have accurate results, AFM cantilevers must be calibrated precisely before use. The AFM cantilever's spring constant is usually provided by the manufacturer, and it is calculated from simple equations or some other calibration methods. The spring constant may have some uncertainty, which may cause large errors in force measurement. In this paper, finite element analysis was used to obtain the deformation behavior of the AFM cantilever and to calculate its spring constant. The influence of prestress, ignored by other methods, is discussed in this paper. The variations of Young's modulus, Poisson's ratio, cantilever geometries, tilt angle, and the influence of image tip mass were evaluated to find their effects on the cantilever's characteristics. The results were compared with those obtained from other methods.  相似文献   

10.
《中国测试》2016,(3):1-6
利用原子力显微镜对材料表面的力学性能进行定量表征时,需要准确知道原子力显微镜探针悬臂的弹性常数,所以对弹性常数进行校正十分重要。该文综述近年来对探针悬臂弹性常数的校正方法,主要包括维度法、静态挠度法、动态挠度法。维度法对不同悬臂形状(主要针对矩形、V型)进行阐述,分析不同方法使用的数学模型与优缺点;静态挠度法不仅对方法的数学模型进行阐述,还着重介绍近年来对该方法精确度的改进研究;动态挠度法以附加质量法、Sader法与热调谐法分别阐述,比较3种方法的模型特点与先进性;最后分析常用探针适合使用的校正方法,对今后校正方法的发展提供参考。  相似文献   

11.
Valdrè G  Moro D 《Nanotechnology》2008,19(40):405501
The investigation of the nanoscale distribution of electrostatic forces on material surfaces is of paramount importance for the development of nanotechnology, since these confined forces govern many physical processes on which a large number of technological applications are based. For instance, electric force microscopy (EFM) and micro-electro-mechanical-systems (MEMS) are technologies based on an electrostatic interaction between a cantilever and a specimen. In the present work we report on a 3D finite element analysis of the electrostatic deflection of cantilevers for electric and Kelvin force microscopy. A commercial triangular shaped cantilever with a symmetric pyramidal tip was modelled. In addition, the cantilever was modified by a focused ion beam (FIB) in order to reduce its parasitic electrostatic force, and its behaviour was studied by computation analysis. 3D modelling of the electrostatic deflection was realized by using a multiphysics finite element analysis software and it was applied to the real geometry of the cantilevers and probes obtained by using basic CAD tools. The results of the modelling are in good agreement with experimental data.  相似文献   

12.
Valdrè G  Moro D 《Nanotechnology》2008,19(40):405502
This paper deals with an application of 3D finite element analysis to the electrostatic interaction between (i) a commercial rectangular shaped cantilever (with an integrated anisotropic pyramidal tip) and a conductive sample, when a voltage difference is applied between them, and (ii) a focused ion beam (FIB) modified cantilever in order to realize a probe with reduced parasitic electrostatic force. The 3D modelling of their electrostatic deflection was realized by using multiphysics finite element analysis software and applied to the real geometry of the cantilevers and probes as used in conventional electric and Kelvin force microscopy to evaluate the contribution of the various part of a cantilever to the total force, and derive practical criteria to optimize the probe performances. We report also on the simulation of electrostatic shielding of nanometric features, in order to quantitatively evaluate an alternative way of reducing the systematic error caused by the cantilever-to-sample capacitive coupling. Finally, a quantitative comparison between the performances of rectangular and triangular cantilevers (part I of this work) is reported.  相似文献   

13.
We report experiments and models of self-heating in piezoresistive microcantilevers that show how cantilever measurement resolution depends on the thermal properties of the surrounding fluid. The predicted cantilever temperature rise from a finite difference model is compared with detailed temperature measurements on fabricated devices. Increasing the fluid thermal conductivity allows for lower temperature operation for a given power dissipation, leading to lower force and displacement noise. The force noise in air is 76% greater than in water for the same increase in piezoresistor temperature.  相似文献   

14.
15.
16.
In atomic force microscopy, cantilevers with a reflective coating are often used to reduce optical shot noise for deflection detection. However, static AFM experiments can be limited by classical noise and therefore may not benefit from a reduction in shot noise. Furthermore, the cantilever coating has the detrimental side-effect of coupling light power fluctuations into true cantilever bending caused by time-varying thermal stresses. Here, we distinguish three classes of noise: detection, force, and displacement noise. We discuss these noises with respect to cantilever coating in the context of both static and dynamic AFM experiments. Finally, we present a patterned cantilever coating which reduces the impact of these noises.  相似文献   

17.
Atomic Force Microscopy (AFM) measurements are extensively used for a detailed understanding of molecular and surface forces. In this study, we present a technique for measuring such forces, using an AFM cantilever attached with a porous gamma alumina nanoparticle aggregate. The modified cantilever was used to measure the forces of interaction of the aggregate with hydrophilic and hydrophobic surfaces. A strong force of attraction was observed between the aggregate and hydrophilic surfaces when the aggregate was kept dry. However, the force of interaction on the aggregate in wet form (water filled in pores) was larger when the adjoining surface had hydrophobic characteristics. The results presented in this study show the versatility of the current technique and indicate its usefulness in directly characterizing hydrophilic/hydrophobic properties of nano-scale surfaces and patterns.  相似文献   

18.
We demonstrate frequency modulation Kelvin probe force microscopy operated in lift-mode under ambient conditions. Frequency modulation detection is sensitive to force gradients rather than forces as in the commonly used amplitude modulation technique. As a result there is less influence from electric fields originating from the tip's cone and cantilever, and the recorded surface potential does not suffer from the large lateral averaging observed in amplitude modulated Kelvin probe force microscopy. The frequency modulation technique further shows a reduced dependence on the lift-height and the frequency shift can be used to map the second order derivative of the tip-sample capacitance which gives high resolution material contrast of dielectric sample properties. The sequential nature of the lift-mode technique overcomes various problems of single-scan techniques, where crosstalk between the Kelvin probe and topography feedbacks often impair the correct interpretation of the recorded data in terms of quantitative electric surface potentials.  相似文献   

19.
Micromechanical testing of SU-8 cantilevers   总被引:1,自引:0,他引:1  
SU‐8 is a photoplastic polymer with a wide range of possible applications in microtechnology. Cantilevers designed for atomic force microscopes were fabricated in SU‐8. The mechanical properties of these cantilevers were investigated using two microscale testing techniques: contact surface profilometer beam deflection and static load deflection at a point on the beam using a specially designed test machine. The SU‐8 Young's modulus value from the microscale test methods is approximately 2–3 GPa.  相似文献   

20.
The electrochemical behavior of electrodes made by sealing carbon nanofibers in glass or with electrophoretic paint has been studied by scanning electrochemical microscopy (SECM). Because of their small electroactive surface area, conical geometry with a low aspect ratio and high overpotential for proton and oxygen reduction, carbon nanofiber (CNF) electrodes are promising candidates for producing electrode nanogaps, imaging with high spatial resolution and for the electrodeposition of single metal nanoparticles (e.g., Pt, Pd) for studies as electrocatalysts. By using the feedback mode of the SECM, a CNF tip can produce a gap that is smaller than 20 nm from a platinum disk. Similarly, the SECM used in a tip-collection substrate-generation mode, which subsequently shows a feedback interaction at short distances, makes it possible to detect a single CNF by another CNF and then to form a nanometer gap between the two electrodes. This approach was used to image vertically aligned CNF arrays. This method is useful in the detection in a homogeneous solution of short-lifetime intermediates, which can be electrochemically generated at one electrode and collected at the second at distances that are equivalent to a nanosecond time scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号