首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The effect of shot peening on the plane bending fatigue strength of a 7.1 g/cm3 sintered Cr-Mo steel was investigated. Shot peening provides surface densification, strain hardening, compressive residual stresses up to −700 MPa, without impairing the dimensional and geometrical precision of specimens. Plane bending fatigue strength increases of 30%, irrespective to the different residual stress profiles obtained by changing the shot peening parameters. The improvement is mainly due to the surface densification and strain hardening.  相似文献   

2.
For the improvement of the fatigue strength for welded structures, mechanical posttreatments have been applied in various industrial fields and in most cases have been found to give substantial increases in their fatigue lives. These methods, generally, consist of the modification of weld toe geometry and the introduction of compressive residual stresses. In mechanical surface treatments, for example, PHP (pneumatic hammer peening) and UNSM (ultrasonic nanocrystal surface modification), the weld profile is modified due to removed or reduced minute crack‐like flaws, and compressive residual stresses are also induced. In this study, a PHP procedure and a UNSM device were introduced, and a quantitative measure of fatigue strength improvement was performed. The fatigue strength at 2 × 106 cycles of hammer‐peened and UNSM treated on a non‐load‐carrying cruciform welded joint shows 220 and 260 MPa, respectively, which are more than two times higher than that of as‐welded specimen. Especially, the surface layer in the vicinity weld toe treated by the UNSM provides nanocrystal structure created by an ultrasonic cold forging and introduces very high welding residual stress in compression.  相似文献   

3.
Shot peening using an air blast machine at elevated temperatures With a new system shot peening using an air blast machine at elevated temperatures is feasable. This is done by mixing the cold airflow which contains the peening media with a hot airflow heated up with a flow heating system. It will be shown for a quenched and tempered steel 42 CrMo 4 (equivalent to AISI 4140) that the fatigue strength increases with increasing peening temperature Tpeen in the temperature range 20 °C ≤ Tpeen ≤ 290 °C. On the one hand this is caused by slightly higher compressive residual stresses in the near surface area which is influenced by the shot peening process. On the other hand different dislocation structures are generated as a result of strain ageing which occurs while and after the shot peening treatment. This also causes a higher stability of the residual stresses compared to the conventional shot peening.  相似文献   

4.
Rehabilitation of a welded structure, which involves repair of cracked joints, is achieved when the local treatment for repair gives a fatigue strength in the joint equal or above the fatigue strength of the uncracked original detail. If the treatment is properly applied the rehabilitation of the detail is assured, and the nature of the weld toe improvement methods can produce a joint, after repair, with a fatigue strength and residual life greater than the initial detail. The paper presents the results obtained on a fatigue study on the rehabilitation of non‐load carrying fillet welded joints loaded in bending at the main plate and with fatigue cracking at the weld toes of the attachment in the main plate and though the plate thickness. Residual stresses were measured at the surface, with X‐ray diffraction. The residual stresses induced by hammer peening at the weld toe were found to be greater along the longitudinal direction of the plate than in the transverse direction. The peak residual stresses near the weld toe were found to be close to yield in compression, justifying the great benefit of hammer peening. Results of a derived gain factor, g, in fatigue life were obtained as a function of the crack depth repaired by hammer peening.  相似文献   

5.
This study concentrates on the origins of unfavourable stresses at the surface of silicon-manganese automotive suspension springs. The residual stresses have been investigated at the various stages of the spring manufacturing--quenching, tempering and shot peening. Residual stresses from quenching depend in a complex fashion on the microstructural state of the surface and on the variation of the thermal gradient into the quenched spring wire. Contrary to expectations, oil-quenching of decarburised spring wire results in tensile residual stresses at the surface, while water quenching results in compressive residual stresses. The residual stresses do not disappear after tempering. Moreover the shot peening after quenching and tempering, if not conducted properly, may result in small compressive or even tensile residual stresses at the surface, which severely diminishes the fatigue resistance of the suspension springs.  相似文献   

6.
Influence of surface integrity on fatigue strength of 40CrNi2Si2MoVA steel   总被引:2,自引:0,他引:2  
Influence of surface integrity (including surface roughness, residual stresses, and microstructure in surface) on fatigue limit of 40CrNi2Si2MoVA steel specimens is investigated comprehensively in this work according to a systematic consideration. The surface integrity of specimens is changed due to several widely used manufacturing procedures: heat-treatment, grinding, electro-polishing, hard chromium plating and shot peening. In comparison with specimen electro-polished after grinding, the specimen without polishing has 10% lower fatigue limit due to higher surface roughness; while shot peening improves the fatigue limit for about 36% due to inducing of compressive residual stress field in the surface and transferring the fatigue crack source from surface to interior. The fatigue limit of specimen with decarburized layer after grinding is lower about 13%, but the shot peening can eliminate its detrimental effect. Hard chromium plating decreases the fatigue limit dramatically. The shot peening carried before plating can improve the fatigue limit of specimen and cause it to get to a level even higher than that of specimen without plating.  相似文献   

7.
Inconel 718 superalloy has wide applications in several industries due to its excellent mechanical properties. However, it is very difficult to machine using conventional cutting and grinding because of its high strength at elevated temperatures. Electrical discharge machining (EDM) is an alternative competitive process to machine Inconel alloys by electrical erosion. However, machinability and surface characteristics of EDMed Inconel surfaces are poorly understood. This study focuses on the machining characteristics of Inconel 718 by Wire-EDM and Sinking-EDM with a new Cu-SiC electrode, respectively. Material removal efficiency, surface roughness, surface topography, surface alloying, and electrode wear have been characterized. It is found that the high toughness of Inconel 718 would be the major contributing factor to the absence of microcracks on the EDMed surface. The new fabricated Cu-SiC electrode for Sinking-EDM has better performance in terms of material removal rate (MRR), surface roughness, and electrode wear. The higher melting temperature and fine microstructure of SiC contribute to the lower electrode wear of the new Cu-SiC electrode than the traditional Cu electrode.  相似文献   

8.
Linear bend splitting and linear flow splitting are innovative methods to produce bifurcated profiles with ultrafine grained (UFG) microstructures in an integral style. Linear bend split profiles exhibit high potential for lightweight applications, due to their bifurcations and the high strength of the ultrafine grained microstructures, which develop at the surface of the work piece. The presence of the ultrafine grained microstructure is accompanied by a duplication of hardness and strength and a markedly increase of the fatigue properties, compared to the untreated material. Because of their high strength, ultrafine grained materials exhibit increased potential for the formation of compressive residual stresses. Therefore, shot peening of ultrafine grained microstructures could result in an increased fatigue resistance. The results clearly show that shot peening, despite optimized shot peening parameters, does not lead to an increase of the fatigue resistance. Compared to the untreated ultrafine grained microstructure, the fatigue resistance of shot peened material is even lower. The lower fatigue resistance is probably caused by the roughness of the shot peened surface, which overcompensates the compressive residual stresses.  相似文献   

9.
The effects of various surface treatment techniques on the fatigue crack growth performance of friction stir welded 2195 aluminum alloy were investigated. The objective was to reduce fatigue crack growth rates and enhance the fatigue life of welded joints. The crack growth rates were assessed and characterized for different peening conditions at a stress ratio (R) of 0.1, and 0.7. The surface and through-thickness residual stress distribution were also investigated and presented for the various regions in the weld. Tensile residual stresses introduced during the welding process were found to become significantly compressive, particularly after laser peening. The effect of the compressive stresses was deemed responsible for increasing the resistance to fatigue crack growth of the welds. The results indicate a significant reduction in fatigue crack growth rates using laser peening compared to shot peening and native welded specimens. This reduced fatigue crack growth rate was comparable to the base unwelded material.  相似文献   

10.
In recent years, with higher demand for improved quality and corrosion resistance, recovered substrates have been extensively used. Consequently residual stresses originated from these coatings reduce the fatigue strength of a component. Due to this negative influence occasioned by corrosion resistance protective coatings, an effective process like shot peening must be considered to improve the fatigue strength. The shot peening treatment pushes the crack sources beneath the surface in most of medium and high cycle cases due to the compressive residual stress field (CRSF) induced. The aim of this study was to evaluate the influence on the fatigue life of anodic films grown on 7050-T7451 aluminium alloy by sulphuric acid anodizing, chromic acid anodizing and hard anodizing. The influence on the rotating and reverse bending fatigue strength of anodic films grown on the aluminium alloy is to degrade the stress life fatigue performance of the base material. A consistent gain in fatigue life in relation to the base material was obtained through the shot peening process in coated specimens, associated to a residual stress field compressive near the surface, useful to avoid fatigue crack nucleation and delay or even stop crack propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号