首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to investigate the mechanism by which short-term pretreatment with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA; 100 nM) enhances noradrenaline (NA) release from the human neuroblastoma cell line SH-SY5Y. Subcellular fractionation and immunocytochemical studies demonstrated that an 8-min TPA treatment caused translocation of the alpha-subtype of protein kinase C (PKC) from the cytosol to the plasma membrane. In contrast, TPA altered the distribution of PKC-epsilon from cytosolic and membrane-associated to cytoskeleton- and membrane-associated. TPA had no effect on the cytosolic location of PKC-zeta. Subcellular fractionation studies also showed that the myristoylated alanine-rich C-kinase substrate (MARCKS), a major neuronal PKC substrate that has been implicated in the mechanism of neurotransmitter release, translocated from membranes to cytosol in response to an 8-min TPA treatment. Under these conditions the level of phosphorylation of MARCKS increased threefold. The ability of TPA to enhance NA release and to cause the translocation and phosphorylation of MARCKS was inhibited by the PKC inhibitor Ro 31-8220 (10 microM). Selective down-regulation of PKC subtypes by prolonged exposure to phorbol 12,13-dibutyrate (100 nM) attenuated the TPA-induced enhancement of NA release and the translocation of MARCKS over an interval similar to that of down-regulation of PKC-alpha (but not -epsilon or -zeta). Thus, we have demonstrated a strong correlation between the translocation of MARCKS and the enhancement of NA release from SH-SY5Y cells due to the TPA-induced activation of PKC-alpha.  相似文献   

2.
Protein kinase C (PKC), the major receptor for tumor-promoting phorbol esters, consists of a family of at least 12 distinct lipid-regulated enzymes. We examined the expression and regulation of PKC isoforms in human saphenous vein endothelial cells (HSVEC). Western blot analysis with PKC isoform-specific antibodies indicated that PKC alpha, PKC epsilon and PKC zeta were expressed in these cells. Translocation and down-regulation of PKC alpha and epsilon but not zeta were detected by short-term and long-term treatment with TPA (12-O-tetradecanoylphorbol 13-acetate), respectively. Tumor necrosis factor-alpha (TNF-alpha 1,600 U/ml) and platelet activating factor (PAF 50 nM) increased the membrane content of PKC alpha and epsilon but not zeta. H2O2 (10 mM) induced the translocation of PKC alpha from the cytosol to the membrane and increased PKC epsilon content in both cytosol and membrane. However, 12-(S)-HETE (12-hydroxyeicosatetraenoic acid) (100 nM), a lipoxygenase metabolite of arachidonic acid, did not affect the two isoforms. These results suggest that the molecular action of TNF-alpha, PAF, and H2O2 in HSVEC might occur through PKC alpha and epsilon activation.  相似文献   

3.
High concentrations of glutamate, the major excitatory neurotransmitter in the mammalian brain, lead to intracellular calcium overload resulting in excitotoxic damage and death of neurons. Since protein kinase C (PKC) is involved in neuronal degeneration resulting from cerebral ischemia and from glutamate excitotoxicity, we investigated the effect of glutamate on changes in the cellular distribution of various PKC isoforms in cultured hippocampal neurons in comparison with the effects elicited by the PKC activator phorbol ester. Out of the expressed PKC isoforms alpha, gamma, epsilon, zeta and lambda only the conventional isoforms PKC alpha and gamma responded to glutamate. Using subcellular fractionation and Western blotting with isoform-specific antibodies and immunocytochemical localization with confocal laser scanning microscopy, we observed that phorbol ester and glutamate have different effects on PKC isoform redistribution: Whereas phorbol ester resulted in translocation of PKC alpha and PKC gamma toward a membrane fraction, the glutamate-mediated rise in intracellular calcium concentration induced a translocation mainly toward a detergent-insoluble, cytoskeletal fraction. Immunocytochemical analysis revealed an isoform-specific translocation following glutamate treatment: PKC gamma was translocated mainly to cytoplasmic, organelle-like structures, whereas PKC alpha redistributed to the plasma membrane and into the cell nucleus. The latter result is of special interest, as it indicates that nuclear PKC may play a role in processes of excitotoxic cell damage.  相似文献   

4.
Carbachol-stimulated insulin release in the RINm5F cell is associated with elevation of the cytosolic Ca2+ concentration ([Ca2+]i) through mobilization of Ca2+ from thapsigargin-sensitive intracellular stores and with the generation of diacylglycerol (DAG). Thus carbachol activates phospholipase C, and this was thought to be the means by which it stimulates insulin secretion. However, when the elevation of [Ca2+]i was blocked by thapsigargin, the effect of carbachol to stimulate insulin release was unchanged. Thus the effect of carbachol to increase [Ca2+]i was dissociated from the stimulation of release. When the role of protein kinase C (PKC) was examined, carbachol-stimulated insulin release was found to be unaffected by phorbol ester-induced downregulation of PKC, using 12-O-tetradecanoylphorbol-13-acetate (TPA), and by the PKC inhibitors staurosporine, bisindolylmaleimide, and 1-O-hexadecyl-2-O-methylglycerol (AMG-C16). These treatments abolished the stimulation of release by TPA. Thus the carbachol activation of PKC appeared also to be dissociated from the stimulation of insulin release. However, when the activation of several different PKC isozymes was studied, an atypical PKC isozyme, zeta, was found to be translocated by carbachol. By Western blotting analysis, carbachol selectively translocated the conventional PKC isozymes alpha and beta (the activation of which is dependent on Ca2+ and DAG) from the cytosol to the membrane. Carbachol also translocated the atypical PKC isozyme zeta, which is insensitive to Ca2+, DAG, and phorbol esters. The PKC inhibitors staurosporine, bisindolylmaleimide, and AMG-C16 blocked the stimulated translocation of PKC-alpha and -beta, but not that of PKC-zeta. Prolonged treatment of the cells with TPA downregulated PKC-alpha and -beta, but not PKC-zeta. Under all these conditions, carbachol-stimulated insulin release was unaffected. However, a pseudosubstrate peptide inhibitor specific for PKC-zeta inhibited the translocation of PKC-zeta and 70% of the carbachol-stimulated insulin secretion. The data indicate that carbachol-stimulated insulin release in RINm5F cells is mediated to a large degree by the activation of the atypical PKC isozyme zeta.  相似文献   

5.
In rat adipocytes and soleus muscles, 2-hydroxypropyl-beta-cyclodextrin (CD) was found to have a relatively small or no effect on basal or insulin-stimulated hexose uptake, but markedly enhanced hexose uptake effects of phorbol esters and/or diacylglycerol. In rat adipocytes, the CD-induced enhancement of hexose uptake during concurrent phorbol ester treatment was not associated with an increase in GLUT4 glucose transporter translocation to the plasma membrane, which was stimulated comparably by insulin and phorbol esters. Moreover, CD appeared to activate or facilitate the activation of glucose transporters subsequent to their translocation to the plasma membrane during ongoing phorbol ester treatment. In rat adipocytes, CD also enhanced the translocation of protein kinase C (PKC)-beta to the plasma membrane during the action of phorbol esters, which alone had little or no effect on this specific PKC translocation. Although it is uncertain how CD alters the function of plasma membranes to enhance the translocation of PKC-beta to, and the activation of glucose transporters within, this subcellular fraction during phorbol ester treatment, our findings provide direct support for a two-step model in the activation of glucose transport. In addition, it seems clear that, at least in some cell types, simple phorbol ester treatment does not necessarily serve as a ubiquitous activator of all activable PKC pools and all potential PKC-mediated responses.  相似文献   

6.
The presence of the non-selective protein kinase C (PKC) inhibitors, staurosporine (100 nM) and polymyxin B (100 microM) in cultured human RPE cells for more than 24 h triggers apoptotic death. Apoptosis is characterized by a diminishing number of cells, a labelling of nuclei by the TUNEL method and by observable morphological changes. An inhibitor of PKC and cyclic nucleotide-dependent protein kinases, 1-(5-isoquinolinesulphonyl)-2-methyl piperazine (H-7; 100 microM), was without effect, as was the specific PKC inhibitor, calphostin C (100 nM). The PKC-activating phorbol esters, phorbol-12-myristate-13-acetate (PMA; 1 microM) and phorbol-12,13-dibutyrate (PDB; 1 microM) and the non-tumour-promoting phorbol ester, 4 alpha-PMA (1 microM) were without effect, as was the diacyl glycerol analogue, 1,2-dioctanoyl-snglycerol (DOG; 10 microM). The PKC activators did not attenuate the apoptosis induced by staurosporine or polymyxin B. Furthermore, deprivation of glucose and oxygen (simulated ischemia) for 72 h induced apoptosis: this could be prevented by inclusion of 10% (v/v) foetal bovine serum (FBS) but not by a variety of PKC activators. Six PKC isoenzymes were shown to be present in RPE cells (alpha, beta 1, beta 2, delta, epsilon, E) and only the calcium-dependent cPKC levels changed after treatment with staurosporine or simulated ischaemia. Since only the less selective inhibitors of PKC induced apoptosis, it is suggested that PKC is not involved directly in the induction process of apoptosis in RPE cells. It is possible that the staurosporine and polymyxin B-induced effects of apoptosis in RPE cells are triggered by an unknown kinase-dependent pathway, but whether the 'ischaemia'-induced death is related to this same process remains to be elucidated.  相似文献   

7.
We examined the possibility that protein kinase C (PKC) is chronically activated and may contribute to impaired glycogen synthesis and insulin resistance in soleus muscles of hyperinsulinemic type II diabetic Goto-Kakizaki (GK) rats. Relative to nondiabetic controls, PKC enzyme activity and levels of immunoreactive PKC-alpha, beta, epsilon, and delta were increased in membrane fractions and decreased cytosolic fractions of GK soleus muscles. In addition, PKC-theta levels were decreased in both membrane and cytosol fractios, whereas PKC-zeta levels were not changed in either fraction in GK soleus muscles. These increases in membrane PKC (alpha, beta, epsilon, and delta) could not be accounted for by alterations in PKC mRNA or total PKC levels but were associated with increases in membrane diacylglycerol (DAG) and therefore appeared to reflect translocative activation of PKC. In evaluation of potential causes for persistent PKC activation, membrane PKC levels were decreased in soleus muscles of hyperglycemic streptozotocin (STZ)-induced diabetic rats; thus, a role for simple hyperglycemia as a cause of PKC activation in GK rats was not evident in the STZ model. In support of the possibility that hyperinsulinemia contributed to PKC activation in GK soleus muscles, we found that DAG levels were increased, and PKC was translocated, in soleus muscles of both (1) normoglycemic hyperinsulinemic obese/aged rats and (2) mildly hyperglycemic hyperinsulinemic obese/Zucker rats. In keeping with the possibility that PKC activation may contribute to impaired glycogen synthase activation in GK muscles, phorbol esters inhibited, and a PKC inhibitor, RO 31-8220, increased insulin effects on glycogen synthesis in soleus muscles incubated in vitro. Our findings suggested that: (1) hyperinsulinemia, as observed in type II diabetic GK rats and certain genetic and nongenetic forms of obesity in rats, is associated with persistent translocation and activation of PKC in soleus muscles, and (2) this persistent PKC activation may contribute to impaired glycogen synthesis and insulin resistance.  相似文献   

8.
The function of P-glycoprotein (Pgp), which confers multidrug resistance by active efflux of drug, is thought to be dependent on phosphorylation. Previous studies have suggested that protein kinase C (PKC) plays an important role in Pgp phosphorylation. We report here the effects of bryostatin 1, a unique PKC activator and inhibitor, on Pgp function in a multidrug-resistant MCF-7 human breast cancer subline which overexpresses PKC-alpha. Bryostatin 1 (100 nM) decreased Pgp phosphorylation after 24 h of treatment. In contrast, it did not affect Pgp function as demonstrated by the accumulation of [3H]vinblastine and rhodamine 123. We compared the effect of bryostatin 1 treatment on PKC-alpha with that of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (200 nM). 12-O-tetradecanoylphorbol-13-acetate caused translocation of PKC-alpha from the cytosol to the cell membrane after a 10-min treatment and its down-regulation after 24 h of treatment. Likewise, bryostatin 1 (100 nM) caused translocation, but only after longer treatment (1 h), and it caused down-regulation of PKC-alpha at 24 h of treatment. Thus, while the MCF-7TH cells overexpress the PKC-alpha isoform, and its down-regulation by bryostatin 1 is associated with decreased Pgp phosphorylation, these alterations do not modulate drug transport. We conclude that, while bryostatin 1 may be useful clinically because of its ability to inhibit PKC, it is not able to reverse Pgp-mediated multidrug resistance.  相似文献   

9.
The migration of retinal pigment epithelial (RPE) cells is an important step in various pathologic conditions, including subretinal neovascularization (SRN) and proliferative vitreoretinopathy (PVR). Therefore, elucidation of the mechanism of RPE migration may be useful in devising effective treatment for these disorders. Since protein kinase C (PKC) has been shown to regulate the migration of other cell types, we studied the effects of PKC agonists and antagonists on RPE migration. We used an in vitro wound healing model in which a small area of a confluent monolayer of bovine RPE cells was denuded with a razor blade. The cultures were subsequently incubated with agents known to stimulate [phorbol 12-myristate 13-acetate (PMA)] or inhibit (calphostin C, staurosporine) PKC. After 20 hr, migration was measured as the number of cells that had entered the denuded area. We also measured the translocation of PKC from the cytosol to the membrane in order to determine the activation or inhibition of PKC by PMA and calphostin C in the cells. The phorbol ester PMA stimulated migration by 41%, and calphostin C and staurosporine inhibited migration by 38% and 31%, respectively, in a medium supplemented with 10% serum. To determine the requirement for serum in this modulation, we also measured the effects of PMA and calphostin C on RPE migration in serum-free medium. Under these conditions, basal migration was greatly decreased, but PMA stimulated migration by 177% and calphostin C inhibited migration by 93%. Since PKC modulation is known to induce the proliferation of cells, we also tested the effects of these agents on growth-inhibited migration by pretreating the cells with the antiproliferative drug mitomycin C. We found that modulation of PKC under these conditions equally affected growth-inhibited and growth-dependent migration. Therefore, based on the increase in RPE migration induced by a PKC agonist, and the decrease in migration caused by PKC antagonists, it is suggested that PKC-mediated signal transduction plays a crucial role in RPE cell migration. This knowledge may be useful in devising effective treatments for SRN and PVR.  相似文献   

10.
Protein kinase C is an important second messenger system, which is translocated from the cytosol to the cell membrane upon cell stimulation. We used confocal microscopy to study the spatial distribution of protein kinase C isoforms after stimulation of cultured vascular smooth muscle cells with different agonists. First, we analysed the effects of angiotensin II and platelet-derived growth factor (PDGF). Confocal microscopy showed a rapid assembly of PKC alpha along cytosolic fibres followed by a translocation towards the nucleus with angiotensin II. PDGF engendered a similar, but much slower response; however, a cytoskeletal distribution was not observed. We then investigated the effects of thrombin and bFGF on nuclear translocation. bFGF induced a rapid translocation of the isoform towards the perinuclear region and into the nucleus. bFGF had a similar effect on PKC epsilon. In contrast, thrombin had a smaller effect on nuclear translocation of PKC alpha and did not influence PKC epsilon, but instead induced a rapid nuclear translocation of PKC zeta. Thus, tyrosine kinase receptor activation via bFGF induces a rapid association of PKC alpha and epsilon within nuclear structures. Our results show that agonists cause, not only a translocation of protein kinase C isoforms into the cell membrane but also into the cell nucleus. Lastly, we analyzed the nuclear immunoreactivity of the PKC isoforms, alpha, delta, epsilon and zeta in vascular smooth muscle cells during the cell cycle. Resting cells were stimulated with foetal calf serum (FCS, 10%), which translocated PKC alpha and epsilon to the perinuclear region and into the nucleus, while PKC delta and zeta showed no increase in nuclear immunoreactivity. After 4 h of FCS, the nuclear immunoreactivity for PKC alpha and epsilon was reduced to or below control values. At 8 h, increased nuclear expression of isoforms alpha, epsilon and zeta was observed, while isoform delta was not affected. Our results demonstrate a complex spatial and temporal regulation of PKC isoforms in response to vasoactive hormones and growth factors. We suggest that protein kinase C may be important for nuclear signaling and demonstrate that nuclear translocation of PKC isoforms is differentially regulated during the cell cycle.  相似文献   

11.
We investigated the expression, distribution, and activation parameters of protein kinase C (PKC) isozymes in isolated rat parotid acinar cells. By analyzing cellular extracts by western blot analysis and for isozyme-specific RNA, the Ca(2+)-independent PKC-delta, -epsilon, and -zeta were detected in the cytosolic, particulate (plasma membrane), and nuclear fractions of unstimulated cells, whereas the Ca(2+)-dependent PKC-alpha was confined to the cytosolic and particulate fractions. The expressed isozymes showed distinct responses to phorbol 12-myristate 13-acetate (PMA), thymeleatoxin, and cell surface receptor agonists with respect to translocation from cytosol to particulate fraction and nucleus, as well as sensitivity to down-regulation caused by prolonged exposure to PMA (3-20 hr). The marked susceptibility to down-regulation displayed by PKC-alpha and -delta was accompanied by an enhanced secretory response to norepinephrine as compared with control cells. Further, the selective PKC inhibitors Ro 31-8220 and CGP 41,251 also produced a concentration-dependent enhancement of norepinephrine-induced amylase secretion. Our findings suggest that PKC-alpha or -delta plays a negative modulatory role, rather than an obligatory role, in amylase secretion. Also, the localization and redistribution of PKC-epsilon and -delta to the nucleus by PKC activators imply that one or both of these isozymes may regulate such processes as cellular proliferation and/or differentiation.  相似文献   

12.
Bistratene A is a polyether which was isolated from the marine ascidian Lissoclinum bistratum Sluiter. The hypothesis has been tested that the cytostatic effect of bistratene A is mediated by modulation of protein kinase C (PKC). Human-derived A549 lung and MCF-7 breast adenocarcinoma cells are extremely sensitive to growth inhibition induced by activators of PKC. Therefore, the effect of bistratene A on these cell lines was compared with that of the known PKC activator 12-O-tetradecanoylphorbol-13-acetate (TPA). The ability of bistratene A to modulate PKC activity in cellular cytosol was assessed to determine the involvement of PKC in the induction of cytostasis. Bistratene A inhibited the growth of both cell lines and initial seeding density determined its cytostatic potency. IC50 values were between 1.0 and 2.9 nM. Bistratene A also had a profound effect on the colony forming ability of A549 cells, preventing clonal growth at 5 nM. Using the incorporation of [3H]thymidine into cells to assess DNA synthetic activity and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay to define cytotoxicity, the compound was found to have both cytostatic and cytotoxic properties. Bistratene A decomposed by 50% after only 2.8 hr in cell culture medium. TPA induced rapid motility and the formation of a network of branched colonies in both cell lines grown on Matrigel, whereas bistratene A did not cause the same effect. Cell cytosol was analysed for phorbol ester binding sites after treatment with bistratene A or TPA. Incubation with TPA (10 nM) caused a reduction in binding sites to 57% of binding in control cells after 30 min and to 35% after 24 hr. Bistratene A did not cause a significant change in binding sites. Assays of PKC activity in cellular cytosol revealed that bistratene A was unable to activate or inhibit the enzyme at concentrations of up to 10 microM. The results suggest that bistratene A is an exquisitely potent cytostatic agent in the two cell lines studied, but modulation of PKC is not involved in the mode of action by which it elicits this effect.  相似文献   

13.
In intact, but not in permeabilized, human erythroid progenitor cells, thrombin and phorbol esters potentiate cellular cAMP formation in response to Gs-coupled receptor agonists such as prostaglandin E1 (PGE1). We show here that the two agonists achieve their phenotypically similar effects by using distinctly different signaling pathways, both of which require protein kinase C (PKC) activation. After short term exposure (11 min), phorbol esters caused an alkaline shift of cellular pH by approximately 0.1 unit, resulting in a 1.5-2-fold increase in PGE1-induced cAMP formation. The effect of phorbol esters was inhibited by 5-(N-ethyl-N-isopropyl)amiloride, a specific inhibitor of the Na+/H+ exchanger, and by the PKC inhibitors GF 109203X, G? 6976, and staurosporine. Thrombin increased cellular pH by only 0.02-0.05 unit but seemed to potentiate PGE1-stimulated cAMP formation by an effect on the Gs-activated adenylyl cyclase involving a Ca2+-independent (novel) PKC. This effect was inhibited by GF 109203X and staurosporine but was resistant to 5-(N-ethyl-N-isopropyl)amiloride or G? 6976. Inactivation of PKC by incubation of the cells in the presence of 10 nM phorbol-12-myristate-13-acetate for 18 hr completely abolished the potentiating effect of thrombin on cyclase activity, whereas the pH-dependent stimulation was fully retained. Northern blots with specific cDNA probes and a lack of Ca2+ sensitivity indicate that progenitor cells predominantly express adenylyl cyclase type VII. Our results suggest that in normal human erythroid progenitors, thrombin can activate pH-dependent and -independent, PKC-linked pathways converging on adenylyl cyclase type VII to potentiate cAMP formation in response to Gs-coupled receptor agonists.  相似文献   

14.
The modulatory effects of protein kinase C (PKC) on the activation of cytosolic phospholipase A2 (cPLA2) and adenylyl cyclase (AC) have recently been described. Since the signalling cascades associated with these events play critical roles in various functions of macrophages, we set out to investigate the crosstalk between PKC and the cPLA2 and AC pathways in mouse RAW 264.7 macrophages and to determine the involvement of individual PKC isoforms. The cPLA2 and AC pathways were studied by measuring the potentiation by the phorbol ester PMA of ionomycin-induced arachidonic acid (AA) release and prostagladin E1 (PGE1)-stimulated cyclic AMP production, respectively. PMA at 1 microM caused a significant increase in AA release both in the presence (371%) and absence (67%) of ionomycin induction, while exposure of RAW 264.7 cells to PMA increased PGE1 stimulation of cyclic AMP levels by 208%. Treatment of cells with staurosporine and Ro 31-8220 inhibited the PMA-induced potentiation of both AA release and cyclic AMP accumulation, while Go 6976 (an inhibitor of classical PKC isoforms) and LY 379196 (a specific inhibitor of PKCbeta) inhibited the AA response but failed to affect the enhancement of the cyclic AMP response by PMA. Long term pretreatment of cells with PMA abolished the subsequent effect of PMA in potentiating AA release, but only inhibited the cyclic AMP response by 42%. Neither PD 98059, an inhibitor of MEK, nor genistein, an inhibitor of tyrosine kinases, had any effect on the ability of PMA to potentiate AA or cyclic AMP production. The potentiation of AA release, but not of cyclic AMP formation, by PMA was sensitive to inhibition by wortmannin. This effect was unrelated to the inhibition of PKC activation as deduced from the translocation of PKC activity to the cell membrane. Western blot analysis revealed the presence of eight PKC isoforms (alpha, betaI, betaII, delta, epsilon, mu, lambda and xi) in RAW 264.7 cells and PMA was shown to induce the translocation of the alpha, betaI, betaII, delta, epsilon and mu isoforms from the cytosol to the cell membrane within 2 min. Pretreatment of cells with PMA for 2-24 h resulted in a time-dependent down-regulation of PKCalpha, betaI, betaII, and delta expression, while the levels of the other four PKC isozymes were unchanged after PMA treatment for 24 h. A decrease in the potentiation of AA release by PMA was observed, concomitant with the time-dependent down-regulation of PKC. These results indicate that PKCbeta has a crucial role in the mediation of cPLA2 activation by the phorbol ester PMA, whereas PMA utilizes PKC epsilon and/or mu to up-regulate AC activity.  相似文献   

15.
Phosphorylation of specific amino acid residues is believed to be crucial for the agonist-induced regulation of several G protein-coupled receptors. This is especially true for the three types of opioid receptors (mu, delta, and kappa), which contain consensus sites for phosphorylation by numerous protein kinases. Protein kinase C (PKC) has been shown to catalyze the in vitro phosphorylation of mu- and delta-opioid receptors and to potentiate agonist-induced receptor desensitization. In this series of experiments, we continue our investigation of how opioid-activated PKC contributes to homologous receptor down-regulation and then expand our focus to include the exploration of the mechanism(s) by which mu-opioids produce PKC translocation in SH-SY5Y neuroblastoma cells. [D-Ala2,N-Me-Phe4,Gly-ol]enkephalin (DAMGO)-induced PKC translocation follows a time-dependent and biphasic pattern beginning 2 h after opioid addition, when a pronounced translocation of PKC to the plasma membrane occurs. When opioid exposure is lengthened to >12 h, both cytosolic and particulate PKC levels drop significantly below those of control-treated cells in a process we termed "reverse translocation." The opioid receptor antagonist naloxone, the PKC inhibitor chelerythrine, and the L-type calcium channel antagonist nimodipine attenuated opioid-mediated effects on PKC and mu-receptor down-regulation, suggesting that this is a process partially regulated by Ca2+-dependent PKC isoforms. However, chronic exposure to phorbol ester, which depletes the cells of diacylglycerol (DAG) and Ca2+-sensitive PKC isoforms, before DAMGO exposure, had no effect on opioid receptor down-regulation. In addition to expressing conventional (PKC-alpha) and novel (PKC-epsilon) isoforms, SH-SY5Y cells also contain a DAG- and Ca2+-independent, atypical PKC isozyme (PKC-zeta), which does not decrease in expression after prolonged DAMGO or phorbol ester treatment. This led us to investigate whether PKC-zeta is similarly sensitive to activation by mu-opioids. PKC-zeta translocates from the cytosol to the membrane with kinetics similar to those of PKC-alpha and epsilon in response to DAMGO but does not undergo reverse translocation after longer exposure times. Our evidence suggests that direct PKC activation by mu-opioid agonists is involved in the processes that result in mu-receptor down-regulation in human neuroblastoma cells and that conventional, novel, and atypical PKC isozymes are involved.  相似文献   

16.
Phospholipid/calcium-dependent protein kinase (protein kinase C [PKC]) is a critical system in signal transduction of many different cells including airway smooth muscle (ASM) cells. We have previously shown that after administration of different phorbol esters, specific activators of PKC, characteristic electrical and contractile changes of ASM cells can be demonstrated. Similarly, our data showed that stimulation of PKC is implicated in the process of sensitization and the specific antigen challenge response of ASM cells. In this study we examined the effect of staurosporine, a microbial alkaloid, which has been reported to be a specific inhibitor of PKC, on sensitization- and specific antigen challenge-induced electrical and contractile changes of ASM cells. The effect of staurosporine was compared with those of amiloride, furosemide, and compounds NA-0345 and H-7, both synthetic PKC inhibitors. We used ASM preparations isolated from adult male guinea pigs (Camm-Hartley strain). Changes in both membrane potential (Em), measured by a glass microelectrode technique, and isometric force, measured by copper-beryllium strain gauge, were continuously monitored. Experiments were conducted with optimal length (Lmax) of ASM preparations and at 37 degrees C. We found that the exposure of ASM preparations to staurosporine, NA-0345, H-7, amiloride, and furosemide (all in 10(-12) to 10(-4) M) had no measurable effect on the resting membrane potential or isometric force of ASM preparations. In contrast, pretreatment of ASM preparations with staurosporine, NA-0345, H-7, amiloride, or furosemide significantly attenuated (p < 0.001) phorbol myristate acetate-induced changes of ASM preparations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
1. In this study, the underlying mechanism of stimulation of respiratory burst by kazinol B, a natural isoprenylated flavan, in rat neutrophils in vitro was investigated. 2. Kazinol B concentration-dependently stimulated the superoxide anion (O2*-) generation, with a lag but transient activation profile, in neutrophils but not in a cell-free system. The maximum response (13.2+/-1.4 nmol O2*- 10 min(-1) per 10(6) cells) was observed at 10 microM kazinol B. 3. Pretreatment of neutrophils with phorbol 12-myristate 13-acetate (PMA) or formylmethionyl-leucyl-phenylalanine (fMLP) significantly enhanced the O2*- generation following the subsequent stimulation of cells with kazinol B. 4. Cells pretreated with EGTA or a protein kinase inhibitor staurosporine effectively attenuated the kazinol B-induced O2*- generation. However, a p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 and a phosphoinositide 3-kinase (PI3K) inhibitor wortmannin had no effect on the kazinol B-induced response. 5. Kazinol B significantly stimulated [Ca2+]i elevation in neutrophils, with a lag and slow rate of rise activation profile, and this response was attenuated by a phospholipase C (PLC) inhibitor U73122. Kazinol B also stimulated the inositol bis- and trisphosphate (IP2 and IP3) formation with a 1 min lag time. 6. The membrane-associated PKC-alpha and PKC-theta but not PKC-iota were increased following the stimulation of neutrophils with kazinol B. It was more rapid and sensitive in the activation of PKC-theta than PKC-alpha by kazinol B. Kazinol B partially inhibited the [3H]phorbol 12,13-dibutyrate ([3H]PDB) binding to the neutrophil cytosolic PKC. 7. Neither the cellular mass of phosphatidic acid (PA) and phosphatidylethanol (PEt), in the presence of ethanol, nor the protein tyrosine phosphorylation were stimulated by kazinol B. In addition, the kazinol B-induced O2*- generation remained relatively unchanged in cells pretreated with ethanol or a tyrosine kinase inhibitor genistein. 8. Collectively, these results indicate that the stimulation of the respiratory burst by kazinol B is probably mediated by the synergism of PKC activation and [Ca2+]i elevation in rat neutrophils.  相似文献   

18.
Lead (Pb) exposure reportedly modulates PKC activity in brain endothelial preparations, which may underlie Pb-induced damage at the blood-brain barrier. Our previous work indicates that Pb accumulates in the choroid plexus and causes dysfunction of this blood-cerebrospinal fluid (CSF) barrier. The present studies were undertaken to test the hypothesis that Pb in the choroid plexus may alter PKC activity and thus affect the functions of the blood-CSF barrier. When choroidal epithelial cells in a primary culture were exposed to Pb (10 microM in culture medium), the membrane-bound PKC activity increased by 5.2-fold, while the cytosolic PKC activities decreased, an indication of the induction of PKC translocation by Pb. The effect of Pb on cellular PKC was concentration dependent in the range of 0.1-10 microM. We further evaluated PKC activity of the choroid plexus in rats chronically exposed to Pb in the drinking water (control, 50 or 250 micrograms Pb/ml) for 30, 60, or 90 days. Two-way analysis of variance revealed a significant age-related decline of PKC activities in both cytosol and membrane of the choroid plexus. However, Pb treatment did not alter plexus PKC activities. In addition, we found that short-term, acute Pb exposure in rats did not significantly change PKC activities nor did it affect the expression of PKC isoenzymes in the choroid plexus. Our results suggest that Pb exposure may promote the translocation of PKC from cytosol to membrane in rat blood-CSF barrier in vitro, but not in vivo.  相似文献   

19.
We have investigated the role and mechanism of protein kinase C (PKC) isoforms in endothelin-1 (ET-1)-induced arachidonic acid (AA) release in cat iris sphincter smooth muscle (CISM) cells. ET-1 increased AA release in a concentration (EC50=8 nM) and time-dependent (t1/2=1.2 min) manner. Cytosolic phospholipase A2 (cPLA2), but not phospholipase C (PLC), is involved in the liberation of AA in the stimulated cells. This conclusion is supported by the findings that ET-1-induced AA release is inhibited by AACOCF3, quinacrine and manoalide, PLA2 inhibitors, but not by U-73122, a PLC inhibitor, or by RHC-80267, a diacylglycerol lipase inhibitor. A role for PKC in ET-1-induced AA release is supported by the findings that the phorbol ester, PDBu, increased AA release by 96%, that prolonged treatment of the cells with PDBu resulted in the selective down regulation of PKCalpha and the complete inhibition of ET-1-induced AA release, and that pretreatment of the cells with staurosporine or RO 31-8220, PKC inhibitors, blocked the ET-1-induced AA release. G?-6976, a compound that inhibits PKCalpha and beta specifically, blocked ET-1-induced AA release in a concentration-dependent manner with an IC50 value of 8 nM. Thymeatoxin (0.1 microM), a specific activator of PKCalpha, beta, and gamma induced a 150% increase in AA release. Treatment of the cells with ET-1 caused significant translocation of PKCalpha, but not PKCbeta, from cytosol to the particulate fraction. These results suggest that PKCalpha plays a critical role in ET-1-induced AA release in these cells. Immunochemical analysis revealed the presence of cPLA2, p42mapk and p44mapk in the CISM cells. The data presented are consistent with a role for PKCalpha, but not for p42/p44 mitogen-activated protein kinase (MAPK), in cPLA2 activation and AA release in ET-1-stimulated CISM cells since: (i) the PKC inhibitor, RO 31-8220, inhibited ET-1-induced AA release, cPLA2 phosphorylation and cPLA2 activity, but had no inhibitory effect on p42/p44 MAPK activation, (ii) genistein, a tyrosine kinase inhibitor, inhibited ET-1-stimulated MAPK activity but had no inhibitory effect on AA release in the ET-1-stimulated cells. We conclude that in CISM cells, ET-1 activates PKCalpha, which activates cPLA2, which liberates AA for prostaglandin synthesis.  相似文献   

20.
The enzymatic activity of protein kinase C (PKC) was measured in the cytosol and particulate fraction of parabrachial nucleus, the presumed site of conditioned taste aversion (CTA) engrams. At various time intervals after acquisition of the task (pairing saccharin consumption with subsequent LiCl poisoning) the nucleus was dissected from the frozen coronal sections. An increase (+40%) in the cytosol PKC activity was found 48 h after that pairing in comparison with controls (saline injection instead of LiCl). Particulate enzyme activity virtual did not change (-5%). Thus the total PKC activity increased significantly (21%). Qualitatively similar but less markedly expressed PKC shifts (+18% in cytosol) ere found 24 h following CTA. Twelve hours and 5 days after CTA acquisition the activity and distribution of PKC was similar to that seen in normal rats. The control experiments revealed that 6 h after LiCl injection alone (without previous saccharin consumption) translocation of PKC from the cytosol to the membrane fraction (found previously 1 h after LiCl injection alone) still persisted but did not differ from that found 6 h after its pairing with saccharin drinking (CTA). It is concluded that acquisition of conditioned taste aversion may be followed by synthesis of PKC rather than by its translocation or downregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号