首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence is presented for the participation of the P loop (nucleotides G2250-C2254) of 23 S rRNA in establishing the tertiary structure of the peptidyl transferase center. Single base substitutions were introduced into the P loop, which participates in peptide bond formation through direct interaction with the CCA end of P site-bound tRNA. These mutations altered the pattern of reactivity of RNA to chemical probes in a structural subdomain encompassing the P loop and extending roughly from G2238 to A2433. Most of the effects on chemical modification in the P loop subdomain occurred near sites of tertiary interactions inferred from comparative sequence analysis, indicating that these mutations perturb the tertiary structure of this region of RNA. Changes in chemical modification were also seen in a subdomain composed of the 2530 loop (nucleotides G2529-A2534) and the A loop (nucleotides U2552-C2556), the latter a site of interaction with the CCA end of A site-bound tRNA. Mutations in the P loop induced effects on chemical modification that were commensurate with the severity of their characterized functional defects in peptide bond formation, tRNA binding and translational fidelity. These results indicate that, in addition to its direct role in peptide bond formation, the P loop contributes to the tertiary structure of the peptidyl transferase center and influences the conformation of both the acceptor and peptidyl tRNA binding sites.  相似文献   

2.
In the ribosome, the aminoacyl-transfer RNA (tRNA) analog 4-thio-dT-p-C-p-puromycin crosslinks photochemically with G2553 of 23S ribosomal RNA (rRNA). This covalently linked substrate reacts with a peptidyl-tRNA analog to form a peptide bond in a peptidyl transferase-catalyzed reaction. This result places the conserved 2555 loop of 23S rRNA at the peptidyl transferase A site and suggests that peptide bond formation can occur uncoupled from movement of the A-site tRNA. Crosslink formation depends on occupancy of the P site by a tRNA carrying an intact CCA acceptor end, indicating that peptidyl-tRNA, directly or indirectly, helps to create the peptidyl transferase A site.  相似文献   

3.
rRNA plays an important role in function of peptidyl transferase, the catalytic center of the ribosome responsible for the peptide bond formation. Proper placement of the peptidyl transferase substrates, peptidyl-tRNA and aminoacyl-tRNA, is essential for catalysis of the transpeptidation reaction and protein synthesis. In this report, we define a small set of rRNA nucleotides that are most likely directly involved in binding of tRNA in the functional sites of the large ribosomal subunit. By binding biotinylated tRNA substrates to randomly modified large ribosomal subunits from Escherichia coli and capturing resulting complexes on the avidin resin, we identified four nucleotides in the large ribosomal subunit rRNA (positions G2252, A2451, U2506, and U2585) whose modifications prevent binding of a peptidyl-tRNA analog in the P site and one residue (U2555) whose modification interferes with transfer of peptidyl moiety to puromycin. These nucleotides represent a subset of positions protected by tRNA analogs from chemical modification and significantly narrow the number of 23S rRNA nucleotides that may be directly involved in tRNA binding in the ribosomal functional sites.  相似文献   

4.
We report the synthesis of a radioactive, photolabile oligodeoxyribonucleotide probe and its exploitation in identifying 50 S ribosomal subunit components neighboring its target site, nucleotides 803-811 in 23 S rRNA. Photolysis of the complex formed between the probe and 50 S subunits leads to site-specific probe photoincorporation into proteins L15, L17, and L20, labeled to greater extents, and L13 and L21, labeled to lesser extents. Portions of each of these proteins thus lie within 23 A of nucleotide U803. These results lead us to conclude that nucleotides 803-811 fall on the side of the L13-L17-L20-L21 protein cluster [Walleczek et al. (1988) EMBO J. 7, 3571-3576] that points from the back of the 50 S particle toward the peptidyl transferase center within the 50 S subunit. Such placement is consistent with the observation that an oligoDNA probe directed to nucleotides 803-811 decreases P-site binding of tRNA [Hill et al. (1990) Biochim. Biophys. Acta 1050, 45-50].  相似文献   

5.
It is now generally accepted that 16S and 23S ribosomal RNA play important roles in the decoding and peptidyl transferase activities of ribosomes. Despite their complex structures and numerous associated proteins it is possible that small domains of these rRNAs can fold and function autonomously, particularly those that appear devoid of protein interactions. One candidate for such a domain is the decoding region, located near the 3' end of 16S rRNA (Fig. 1a, b). Consistent with this hypothesis, aminoglycoside antibiotics that interact with the decoding region in 30S subunits interact with other RNAs in the absence of proteins. In addition, certain activities of self-splicing introns, at least superficially, resemble translational decoding. We report here that an oligoribonucleotide analogue of the decoding region interacts with both antibiotic and RNA ligands of the 30S subunit in a manner that correlates with normal subunit function. The activities of the decoding region analogue suggest that the intimidating structural complexity of the ribosome can be, to some degree, circumvented.  相似文献   

6.
During translation of bacteriophage T4 gene 60 mRNA, ribosomes bypass 50 nucleotides with high efficiency. One of the mRNA signals for bypass is a stem-loop in the first part of the coding gap. When the length of this stem-loop is extended by 36 nucleotides, bypass is reduced to 0.35% of the wild-type level. Bypass is partially restored by a mutation in the C-terminal domain of Escherichia coli large ribosomal subunit protein L9. Previous work has shown that L9 is an elongated protein with an alpha-helix that connects and orients the N and C-terminal domains that both contain a predicted RNA binding site. We have determined two binding sites of L9 on 23 S rRNA. A 778 nucleotide RNA fragment encompassing domain V (nucleotides 1999 to 2776) of the 23 S rRNA is retained on filters by L9 and contains both sites. The N and C-terminal domains of L9 were shown to interact with nucleotides just 5' to nucleotide 2231 and 2179 of the 23 S rRNA, respectively, using the toeprint assay. These L9 binding sites on 23 S rRNA suggest that L9 functions as a brace across helix 76 to position helices 77 and 78 relative to the peptidyl transferase center. In this study, bypass on a mutant gene 60 mRNA has been used as an assay to probe the importance of particular L9 amino acids for function. Amino acid substitutions in the C-terminal domain are shown to partially restore bypass. These mutant L9 proteins have reduced binding to a 23 S rRNA fragment (nucleotides 1999 to 2274) containing domain V, to which L9 binds. They partially retain both the N and C-terminal domain interactions. On the other hand, substitutions of amino acids in the N-terminal domain, which greatly reduce RNA binding, do not restore bypass. The latter mutants have completely lost the N-terminal domain interaction. Addition of an amino acid to the alpha-helix also restores gene 60 bypass. RNA binding by this mutant is similar to that observed for the C-terminal domain mutants that partially restore bypass.  相似文献   

7.
8.
23S rRNA from Escherichia coli was cleaved at single internucleotide bonds using ribonuclease H in the presence of appropriate chimeric oligonucleotides; the individual cleavage sites were between residues 384 and 385, 867 and 868, 1045 and 1046, and 2510 and 2511, with an additional fortuitous cleavage at positions 1117 and 1118. In each case, the 3' terminus of the 5' fragment was ligated to radioactively labeled 4-thiouridine 5'-,3'-biphosphate ("psUp"), and the cleaved 23S rRNA carrying this label was reconstituted into 50S subunits. The 50S subunits were able to associate normally with 30S subunits to form 70S ribosomes. Intra-RNA crosslinks from the 4-thiouridine residues were induced by irradiation at 350 nm, and the crosslink sites within the 23S rRNA were analyzed. The rRNA molecules carrying psUp at positions 867 and 1117 showed crosslinks to nearby positions on the opposite strand of the same double helix where the cleavage was located, and no crosslinking was detected from position 2510. In contrast, the rRNA carrying psUp at position 384 showed crosslinking to nt 420 (and sometimes also to 416 and 425) in the neighboring helix in 23S rRNA, and the rRNA with psUp at position 1045 gave a crosslink to residue 993. The latter crosslink demonstrates that the long helix 41-42 of the 23S rRNA (which carries the region associated with GTPase activity) must double back on itself, forming a "U-turn" in the ribosome. This result is discussed in terms of the topography of the GTPase region in the 50S subunit, and its relation to the locations of the 5S rRNA and the peptidyl transferase center.  相似文献   

9.
Three photoreactive tRNA probes have been utilized in order to identify ribosomal components that are in contact with the aminoacyl acceptor end and the anticodon loop of tRNA bound to the E site of Escherichia coli ribosomes. Two of the probes were derivatives of E. coli tRNA(Phe) in which adenosines at positions 73 and 76 were replaced by 2-azidoadenosine. The third probe was derived from yeast tRNA(Phe) by substituting wyosine at position 37 with 2-azidoadenosine. Despite the modifications, all of the photoreactive tRNA species were able to bind to the E site of E. coli ribosomes programmed with poly(A) and, upon irradiation, formed covalent adducts with the ribosomal subunits. The tRNA(Phe) probes modified at or near the 3' terminus exclusively labeled protein L33 in the 50S subunit. The tRNA(Phe) derivative containing 2-azidoadenosine within the anticodon loop became cross-linked to protein S11 as well as to a segment of the 16S rRNA encompassing the 3'-terminal 30 nucleotides. We have located the two extremities of the E site-bound tRNA on the ribosomal subunits according to the positions of L33, S11 and the 3' end of 16S rRNA defined by immune electron microscopy. Our results demonstrate conclusively that the E site is topographically distinct from either the P site or the A site, and that it is located alongside the P site as expected for the tRNA exit site.  相似文献   

10.
The sarcin/ricin domain in 23 S/28 S rRNA is crucial for ribosome function, since it constitutes at least part of the binding site for the elongation factors and hence is essential for binding aminoacyl-tRNA and for translocation. The domain is also the site of action of ricin and sarcin and analysis of the effect of mutations in the RNA on recognition by the cytotoxins has helped to define the structure and to understand the function of the region. We have constructed deletions, separately, of pairs of non-conserved, juxtaposed but non-hydrogen-bonded nucleotides that correspond to C4317 and C4331, and to U4316 and C4332, in an oligoribonucleotide that mimics the sarcin/ricin domain in rat 28 S rRNA. The deletions had no effect on the depurination of A4324 by ricin nor on the cleavage of the phosphodiester bond on the 3' side of G4325 by sarcin. However, simultaneous deletion of the four nucleotides decreased cleavage by sarcin but did not affect depurination by ricin. Removal of the non-canonical A4318.A4330 pair abolished recognition by both toxins. Deletion from oligoribonucleotides, that reproduce the sarcin/ricin domain of Escherichia coli 23 S rRNA, of U2653 and C2667 (equivalent to U4316, C4317 and C4331, C4332 in 28 S rRNA), or substitution of guanosine for U2653 (designed to form a Watson-Crick G2653.C2667 pair), reduced cleavage by sarcin whereas depurination by ricin was slightly increased. An increase in the stability of the mutant oligoribonucleotides may be the basis of the impairment in sarcin action. The tm for the wild-type RNA is 60 degreesC; for the double-deletion mutant U2653Delta/C2667Delta it is 65 degreesC; and for the U2653G transversion it is 69 degreesC. Expression of a mutant 23 S rRNA gene lacking U2653 and C2667 is lethal and a U2653G transversion mutation impairs growth. The mutant ribosomes are less active in protein synthesis than the wild-type and ribosomes with the U2653G mutation are resistant to sarcin. The binding of EF-G to oligoribonucleotides with a U2653/C2667 double deletion is reduced and an effect on the affinity of the factor for the sarcin/ricin domain may account in part for the decrease in ribosome efficiency. The results stress the potential importance in rRNA structure and function of non-conserved nucleotides, and suggest that the sarcin/ricin domain in ribosomes requires a region of structural flexibility for optimal efficiency.  相似文献   

11.
Decoding of genetic information occurs upon interaction of an mRNA codon-tRNA anticodon complex with the small subunit of the ribosome. The ribosomal decoding region is associated with highly conserved sequences near the 3' end of 16 S rRNA. The decoding process is perturbed by the aminoglycoside antibiotics, which also interact with this region of rRNA. Mutations of certain nucleotides in rRNA reduce aminoglycoside binding affinity, as previously demonstrated using a model RNA oligonucleotide system. Here, predictions from the oligonucleotide system were tested in the ribosome by mutation of universally conserved nucleotides at 1406 to 1408 and 1494 to 1495 in the decoding region of plasmid-encoded bacterial 16 S rRNA. Phenotypic changes range from the benign effect of U1406-->A or A1408-->G substitutions, to the highly deleterious 1406G and 1495 mutations that assemble into 30 S subunits but are defective in forming functional ribosomes. Changes in the local conformation of the decoding region caused by these mutations were identified by chemical probing of isolated 30 S subunits. Ribosomes containing 16 S rRNA with mutations at positions 1408, 1407+1494, or 1495 had reduced affinity for the aminoglycoside paromomycin, whereas no discernible reduction in affinity was observed with 1406 mutant ribosomes. These data are consistent with prior NMR structural determination of aminoglycoside interaction with the decoding region, and further our understanding of how aminoglycoside resistance can be conferred.  相似文献   

12.
In this work we report the synthesis of a radioactive, photolabile oligodeoxyribonucleotide probe complementary to 16S rRNA nucleotides 1397-1405 and its exploitation in identifying 30S ribosomal subunit components neighboring its target site in 16S rRNA. Nucleotides 1397-1405 lie within a single-stranded sequence that has been linked to the decoding region of Escherichia coli ribosomes. On photolysis in the presence of activated 30S subunits, the photolabile oligodeoxyribonucleotide probe site-specifically incorporates into proteins S1, S7, S18, and S21 (identified by SDS-PAGE, RP-HPLC, and antibody affinity chromatography) and into three separate 16S rRNA regions, specifically, nucleotides A-1396, G-1405-A-1408, and A-1492 and A-1493. These results provide clear evidence that G-1405 in 16S rRNA is within 24 A (the distance between G-1405 and the photogenerated nitrene) of proteins S1, S7, S18, and S21 and each of the other nucleotides mentioned above, consistent with other studies of 30S internal structure. Although the probe binds to inactive 30S subunits about as well as to activated 30S subunits, photolysis of the inactive 30S.probe complex leads to a very different pattern of protein labeling, providing strong evidence, at the protein level, that the inactive to activated transition is accompanied by conformational change in the 1400 region of 16S rRNA.  相似文献   

13.
Directed hydroxyl radical probing of 16S ribosomal RNA from Fe(II) tethered to specific sites within the RNA was used to determine RNA-RNA proximities in 70S ribosomes. We have transcribed 16S ribosomal RNA in vitro as two separate fragments, covalently attached an Fe(II) probe to a 5'-guanosine-alpha-phosphorothioate at the junction between the two fragments, and reconstituted 30S subunits with the two separate pieces of RNA and the small subunit proteins. Reconstituted 30S subunits capable of association with 50S subunits were selected by isolation of 70S ribosomes. Hydroxyl radicals, generated in situ from the tethered Fe(II), cleaved sites in the 16S rRNA backbone that were close in three-dimensional space to the Fe(II), and a primer extension was used to identify these sites of cleavage. Two sets of 16S ribosomal RNA fragments, 1-360/361-1542 and 1-448/449-1542, were reconstituted into active 30S subunits. Fe(II) tethered to position 361 results in cleavage of 16S rRNA around nucleotides 34, 160, 497, 512, 520, 537, 552, and 615, as well as around positions 1410, 1422, 1480, and 1490. Fe(II) tethered to position 449 induces cleavage around nucleotide 488 and around positions 42 and 617. Fe(II) tethered to the 5' end of 16S rRNA induces cleavage of the rRNA around nucleotides 5, 601, 615, and 642. These results provide constraints for the positioning of these regions of 16S rRNA, for which there has previously been only limited structural information, within the 30S subunit.  相似文献   

14.
The adenosinetriphosphatase (ATPase) activity of the Escherichia coli DEAD protein DbpA is unusual in that it is specifically stimulated by 23S ribosomal RNA (rRNA). A coupled spectroscopic ATPase assay was used to investigate the interaction of DbpA with RNA and ATP. A 153-base fragment of domain V of 23S rRNA is kinetically identical to intact, native rRNA in activating DbpA: kcat = 600 min-1, Kapp(RNA) = 10 nM, and Km(ATP) = 120 microM. The ATPase turnover in the absence of RNA is 0.25 min-1. Fragments of 23S rRNA lacking this site (nucleotides 2454-2606) are essentially inactive, as are other RNAs such as poly(A) and tRNA. The relative RNA specificity of DbpA ranges from 10(3) to 10(6) [kmax/Kapp(RNA)]. The interaction with this small RNA fragment was further investigated with regard to stoichiometry, pH, salt and temperature. DbpA is not activated by E. coli ribosomes, nor by large subunits, while denatured ribosomes stimulate full ATPase activity. Taken together with the tight, site-specific binding to naked, unmodified 23S rRNA, this suggests a role for DbpA in ribosome biogenesis rather than translation.  相似文献   

15.
16.
Nucleotide residue U89 in the D loop of Escherichia coli 5S rRNA is adjacent to two domains of 23S rRNA in the large ribosomal subunit [Dokudovskaya et al., RNA 2 (1996) 146-152]. 50S ribosomal subunits were reconstituted containing U89(C, G or A) mutants of 5S rRNAs and the activities of the corresponding 70S ribosomes were studied. The U89C mutant behaves similarly to the wild-type 5S rRNA. Replacement of the pyrimidine base at position U89 by more bulky purine bases impairs the incorporation of 5S rRNA into 50S subunits, whereas the particles formed showed full activities in poly(U)-dependent poly(Phe) synthesis in the presence of either U89G or U89A 5S rRNA mutants. The activity of the reconstituted particles depends on the incorporation of 5S rRNA in agreement with early observations.  相似文献   

17.
Ribosomes are multifunctional RNP complexes whose catalytic activities absolutely depend on divalent metal ions. It is assumed that structurally and functionally important metal ions are coordinated to highly ordered RNA structures that form metal ion binding pockets. One potent tool to identify the structural surroundings of high-affinity metal ion binding pockets is metal ion-induced cleavage of RNA. Exposure of ribosomes to divalent metal ions, such as Pb2+, Mg2+, Mn2+, and Ca2+, resulted in site-specific cleavage of rRNAs. Sites of strand scission catalyzed by different cations accumulate at distinct positions, indicating the existence of general metal ion binding centers in the highly folded rRNAs in close proximity to the cleavage sites. Two of the most efficient cleavage sites are located in the 5' domain of both 23S and 16S rRNA, regions that are known to self-fold even in the absence of ribosomal proteins. Some of the efficient cleavage sites were mapped to the peptidyl transferase center located in the large ribosomal subunit. Furthermore, one of these cleavages was clearly diminished upon AcPhe-tRNA binding to the P site, but was not affected by uncharged tRNA. This provides evidence for a close physical proximity of a metal ion to the amino acid moiety of charged tRNAs. Interestingly, comparison of the metal ion cleavage pattern of eubacterial 70S with that of human 80S ribosomes showed that certain cleavage sites are evolutionarily highly conserved, thus demonstrating an identical location of a nearby metal ion. This suggests that cations, bound to evolutionarily constrained binding sites, are reasonable candidates for being of structural or functional importance.  相似文献   

18.
BACKGROUND:. The ribosomal protein L22 is one of five proteins necessary for the formation of an early folding intermediate of the 23S rRNA. L22 has been found on the cytoplasmic side of the 50S ribosomal subunit. It can also be labeled by an erythromycin derivative bound close to the peptidyl-transfer center at the interface side of the 50S subunit, and the amino acid sequence of an erythromycin-resistant mutant is known. Knowing the structure of the protein may resolve this apparent conflict regarding the location of L22 on the ribosome. RESULTS:. The structure of Thermus thermophilus L22 was solved using X-ray crystallography. L22 consists of a small alpha+beta domain and a protruding beta hairpin that is 30 A long. A large part of the surface area of the protein has the potential to be involved in interactions with rRNA. A structural similarity to other RNA-binding proteins is found, possibly indicating a common evolutionary origin. CONCLUSIONS:. The extensive surface area of L22 has the characteristics of an RNA-binding protein, consistent with its role in the folding of the 23S rRNA. The erythromycin-resistance conferring mutation is located in the protruding beta hairpin that is postulated to be important in L22-rRNA interactions. This region of the protein might be at the erythromycin-binding site close to the peptidyl transferase center, whereas the opposite end may be exposed to the cytoplasm.  相似文献   

19.
The synthetic RNA fragment 5'-CUGGGCGG(GCGA)CCGCCUGG (nucleotides in parentheses indicate the loop region) corresponds to the natural sequence of domain E from nucleotides 79-97 of the Thermus flavus 5S rRNA including a hairpin loop. The RNA structure determined at 3.0 A and refined to an R-value of 24.1% also represents the first X-ray structure GNRA tetraloop. The loop is in distinctly different conformation from other GNRA tetraloops analyzed by NMR. The conformation of the two molecules in the asymmetric unit is influenced and stabilized by specific intermolecular contacts. The structural features presented here give evidence for the ability of RNA molecules to adapt to specific environments.  相似文献   

20.
catA86 is the second gene in a constitutively transcribed, two-gene operon cloned from Bacillus pumilus . The region that intervenes between the upstream gene, termed the leader, and the catA86 coding sequence contains a pair of inverted repeat sequences which cause sequestration of the catA86 ribosome binding site in mRNA secondary structure. As a consequence, the catA86 coding sequence is untranslatable in the absence of inducer. Translation of the catA86 coding sequence is induced by chloramphenicol in Gram-positives and induction requires a function of the leader coding sequence. The leader-encoded peptide has been proposed to instruct its translating ribosome to pause at leader codon 6, enabling chloramphenicol to stall the ribosome at that site. Ribosome stalling causes destabilization of the RNA secondary structure, exposing the catA86 ribosome binding site, allowing activation of its translation. A comparable mechanism of induction by chloramphenicol has been proposed for the regulated cmlA gene from Gram-negative bacteria. The catA86 and cmlA leader-encoded peptides are in vitro inhibitors of peptidyl transferase, which is thought to be the basis for selection of the site of ribosome stalling. Both leader-encoded peptides have been shown to alter the secondary structure of Escherichia coli 23S rRNA in vitro. All peptide-induced changes in rRNA conformation are within domains IV and V, which contains the peptidyl transferase center. Here we demonstrate that the leader peptides alter the conformation of domains IV and V of large subunit rRNA from yeast and a representative of the Archaea. The rRNA target for binding the leader peptides is therefore conserved across kingdoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号