首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An existing volunteer monitoring network in the state of Michigan was exploited to conduct a statewide survey of the cyanobacterial toxin, microcystin, and to test hypotheses about the interactive influences of eutrophication and dreissenid mussel invasion. A total of 77 lakes were sampled by citizen volunteers for microcystin, total phosphorus (TP) and chlorophyll a. Microcystin was measured in depth-integrated samples collected from the euphotic zone as well as in surface-water samples collected along the shoreline. Average microcystin in samples collected by volunteers was not different from samples collected side-by-side by professionals. Euphotic-zone microcystin was positively related to TP in lakes without dreissenids (uninvaded) but not in lakes with dreissenids (invaded). Regression-tree analysis indicated that euphotic-zone microcystin was eight times higher in the presence of dreissenids for lakes with TP between 5 and 10 μg L−1. In contrast, euphotic-zone microcystin was almost identical in invaded and uninvaded lakes with TP between 10 and 26 μg L−1. Across all lakes, microcystin concentrations at the surface were on average more than double, and in some cases an order-of-magnitude greater than, concentrations in the euphotic-zone. Given these results, it seems prudent to include dreissenid invasion status in forecasting models for microcystin, and to include shoreline sampling in monitoring programs aimed at assessing recreational exposure to cyanobacterial toxins.  相似文献   

2.
Ou H  Gao N  Deng Y  Qiao J  Wang H 《Water research》2012,46(4):1241-1250
In this study, the immediate and long-term impacts of shortwave ultraviolet (UV-C) irradiation on photosynthetic capacity, survival, and recovery of Microcystis aeruginosa were investigated. The risk of microcystin-LR (MC-LR) release during irradiation was also estimated. The cell density was determined by a flow cytometry, and typical chlorophyll fluorescence parameters, including the effective quantum yield, photosynthetic efficiency and maximal electron transport rate, were measured by a pulse amplitude modulated (PAM) fluorometer. Under various UV-C dosages (140-4200 mJ cm−2), photosynthetic capacities were reduced, to different degrees, accompanied by slight cytoclasis and complete degradation of extracellular MC-LR immediately after irradiation. In a 6-d cultivation following UV-C irradiation, cell density and extracellular MC-LR in the samples treated by 140 mJ cm−2 UV-C irradiation increased from 4.0 × 106 cells mL−1 and 8 μg L−1 to 5.1 × 106 cells mL−1 and 20 μg L−1, respectively. Significant M. aeruginosa cytoclasis (cell density from 4.0 × 106 to 1.0 × 106 cells mL−1) and MC-LR release (2-25 μg L−1) occurred when the UV-C dosage reached 350 mJ cm−2. Cell cytoclasis and MC-LR release were enhanced in the cultivated samples under higher UV-C dosages. Results revealed that photosynthetic parameters were useful tools to predict the recovery profiles of M. aeruginosa cells, and the MC-LR release risk should be considered after UV-C inactivation.  相似文献   

3.
Gradients in phosphorus (P) removal and storage were investigated over 6 years using mesocosms (each consisting of three tanks in series) containing submerged aquatic vegetation (SAV) grown on muck and limerock (LR) substrates. Mean inflow total P concentrations (TP) of 32 μg L−1 were reduced to 15 and 17 μg L−1 in the muck and LR mesocosms, respectively. Mesocosm P loading rates (mean = 1.75 g m−2 year−1) varied widely during the study and were not correlated with outflow TP, which instead varied seasonally with lowest monthly mean values in December and January.The mesocosms initially were stocked with Najas guadalupensis, Ceratophyllum demersum, and Chara zeylanica, but became dominated by C. zeylanica. At the end of the study, highest vegetative biomass (1.1 and 1.4 kg m−2 for muck and LR substrates) and tissue P content (1775 and 1160 mg kg−1) occurred in the first tank in series, and lowest biomass (1.0 and 0.2 kg m−2) and tissue P (147 and 120 mg kg−1) in the third tank. Sediment accretion rates (2.5, 1.9 and 0.9 cm yr−1 on muck substrates), accrued sediment TP (378, 309 and 272 mg kg−1), and porewater soluble reactive P (SRP) concentrations (40, 6 and 4 μg L−1) in the first, second and third tanks, respectively, exhibited a similar decreasing spatial trend. Plant tissue calcium (Ca) near mesocosm inflow (19-30% dry weight) and outflow (23-26%) were not significantly different, and sediment Ca was also similar (range of 24 to 28%) among sequential tanks.Well-defined vegetation and sediment enrichment gradients developed in SAV wetlands operated under low TP conditions. While the mesocosm data did not reflect deterioration in treatment performance over 6 years, accumulation of P-enriched sediments near the inflow could eventually compromise hydraulic storage and P removal effectiveness of these shallow systems.  相似文献   

4.
The hypothesis that the combination of the flocculent polyaluminium chloride (PAC) with the lanthanum-modified bentonite Phoslock® (Flock & Lock) could sink effectively a water bloom of cyanobacteria and could shift a turbid, cyanobacteria infested lake to a clear water lake was tested in a controlled laboratory experiment and a whole lake experiment. In the laboratory, a relatively low dose of the flocculent PAC (2.2 and 4.4 mg Al l−1) was insufficient to sediment positively buoyant cyanobacteria (Microcystis aeruginosa). Similarly, the lanthanum modified clay (dosed at 390 mg l−1) was insufficient to sediment the positively buoyant cyanobacteria. However, the combination of PAC and Phoslock® effectively sedimented cyanobacteria flocks. Likewise, a combined treatment of 2 tons PAC and 18 tons Phoslock® in Lake Rauwbraken in April 2008 effectively sedimented a developing cyanobacteria bloom of Aphanizomenon flos-aquae. The average chlorophyll-a concentration in the two years prior to this Flock & Lock treatment was 19.5 (±36.5) μg l−1, while it was as low as 3.7 (±4.5) μg l−1 in the years following the treatment. The combined treatment effectively reduced the amount of total phosphorus (TP) in the water column from on average 169 (±126) μg P l−1 before the application to 14 (±15) μg P l−1 after the treatment. Based on mean summer chlorophyll-a and TP concentrations, the lake was shifted from a eutrophic/hypertrophic state to an oligo/mesotrophic state. From directly after treatment in April 2008 until and including 2013, Lake Rauwbraken remained in an oligo-mesotrophic clear water state with TP reduced to less than 10% of the pre-treatment. This result shows that eutrophication in relatively small, isolated, stratifying lakes can be restored by targeting both water column and sediment P using a combination of flocculent and solid phase P-sorbent.  相似文献   

5.
It is generally agreed that the hepatotoxic microcystins (MCs) are the most abundant toxins produced by cyanobacteria in freshwater. In various freshwater lakes in East Africa MC-producing Microcystis has been reported to dominate the phytoplankton, however the regulation of MC production is poorly understood. From May 2007 to April 2008 the Microcystis abundance, the absolute and relative abundance of the mcyB genotype indicative of MC production and the MC concentrations were recorded monthly in five freshwater lakes in Uganda: (1) in a crater lake (Lake Saka), (2) in three shallow lakes (Lake Mburo, George, Edward), (3) in Lake Victoria (Murchison Bay, Napoleon Gulf). During the whole study period Microcystis was abundant or dominated the phytoplankton. In all samples mcyB-containing cells of Microcystis were found and on average comprised 20 ± 2% (SE) of the total population. The proportion of the mcyB genotype differed significantly between the sampling sites, and while the highest mcyB proportions were recorded in Lake Saka (37 ± 3%), the lowest proportion was recorded in Lake George (1.4 ± 0.2%). Consequently Microcystis from Lake George had the lowest MC cell quotas (0.03-1.24 fg MC cell−1) and resulted in the lowest MC concentrations (0-0.5 μg L−1) while Microcystis from Lake Saka consistently showed maximum MC cell quotas (14-144 fg cell−1) and the highest MC concentrations (0.5-10.2 μg L−1). Over the whole study period the average MC content per Microcystis cell depended linearly on the proportion of the mcyB genotype of Microcystis. It is concluded that Microcystis populations differ consistently and independently of the season in mcyB genotype proportion between lakes resulting in population-specific differences in the average MC content per cell.  相似文献   

6.
The paper describes the aerobic degradation of carbamazepine (CBZ), an anti-epileptic drug widely found in aquatic environment, from Erlenmeyer flask to bioreactor by the white-rot fungus Trametes versicolor. In Erlenmeyer flask, CBZ at approximately 9 mg L−1 was almost completely eliminated (94%) after 6 d, while at near environmentally relevant concentrations of 50 μg L−1, 61% of the contaminant was degraded in 7 d. Acridone, acridine, 10,11-dihydro-10,11-dihydroxy-CBZ, and 10, 11-epoxy-CBZ were identified as major metabolites, confirming the degradation of CBZ. The degradation process was then carried out in an air pulsed fluidized bioreactor operated in batch and continuous mode. Around 96% of CBZ was removed after 2 days in batch mode operation, and 10,11-dihydro-10,11-epoxycarbamazepine was found as unique metabolite. In bioreactor operated in continuous mode with a hydraulic retention time of 3 d, 54% of the inflow concentration (approx. 200 μg L−1) was reduced at the steady state (25 d) with a CBZ degradation rate of 11.9 μg CBZ g−1 dry weight d−1. No metabolite was detected in the culture broth. Acute toxicity tests (Microtox) indicated that the final culture broth in both batch and continuous mode operation were non toxic, with 15 min EC50 values of 24% and 77%, respectively.  相似文献   

7.
This work was designed to determine chemically inert mercury-selenium (Hg-Se) compounds formed in a culture of Pseudomonas fluorescens exposed to Hg2+ and SeIV (selenite). To isolate these compounds, different digestion methods were studied and sodium dodecyl sulfate (SDS) lysis was selected. The Hg0 and non-reactive Hg were determined in two series of cultures containing 0.0-6.00 μg L−1 SeIV (0.0-76.0 μmol L−1) in combination with low 5.00 μg L−1 (0.025 μmol L−1) or high 100 μg L−1 (0.500 μmol L−1) Hg2+. It was found that Hg0 formed in the culture decreased with the increase of initial SeIV, while the non-reactive Hg increased with the SeIV. In cultures with low initial [Hg2+], a median SeIV (2.0 μg L−1 or 25.3 μmol L−1) resulted in about 70% of the added Hg2+ sequestered as non-reactive Hg, and in culture with high initial Hg2+, about 40% was sequestered. P. fluorescens was proved to be indispensible for the formation of the non-reactive Hg-Se compounds. The Hg:Se molar ratio in the non-reactive Hg-Se compounds was close to 1, suggesting the existence of mercuric selenide in cells. Mechanisms for the formation of the non-reactive Hg-Se compounds are proposed.  相似文献   

8.
Lürling M  Faassen EJ 《Water research》2012,46(5):1447-1459
Sediment dredging and Phoslock® addition were applied individually and in combination in an enclosure experiment in a Dutch hypertrophic urban pond. These measures were applied to control eutrophication and reduce the risk of exposure to cyanobacterial toxins. Over the 58 days course of the experiment, cyanobacteria (predominantly Microcystis aeruginosa) gradually decreased until they dropped below the level of detection in the combined treated enclosures, they were reduced in dredged enclosures, but remained flourishing in controls and Phoslock® treated enclosures. Cyanobacteria were, however, less abundant in the enclosures (medians chlorophyll-a 30-87 μg l−1) than in the pond (median chlorophyll-a 162 μg l−1), where also a thick surface scum covered one-third of the pond for many weeks.Soluble reactive phosphorus (SRP), total phosphorus and total nitrogen concentrations were significantly lower in the combined dredged and Phoslock® treated enclosures than in controls. Median SRP concentrations were 24 μg P l−1 in the combined treatment, 58 μg P l−1 in dredged enclosures, and 90 μg P l−1 in controls and 95 μg P l−1 in Phoslock® treated enclosures. Hence, the combined treatment was most effective in decreasing SRP and TP, and in lowering cyanobacterial biomass.Microcystin (MC) concentrations were analyzed by LC-MS/MS. MC concentrations and cyanobacterial biomass were positively correlated in all treatments. Mean MC concentrations in controls (71 μg l−1), Phoslock® treated enclosures (37 μg l−1) and dredged enclosures (25 μg l−1) exceeded the provisional guideline of 20 μg l−1, whereas mean MC concentrations were 13 μg l−1 in the combined treated enclosures. All samples contained the MC variants dmMC-RR, MC-RR, MC-YR, dmMC-LR and MC-LR; traces of MC-LY and nodularin were detected in few samples. The different treatments did not change the relative contribution of the variants to the MC pool; MC profiles in all treatments and the pond showed dominance of MC-RR followed by MC-LR. In the surface scum of the pond, total MC concentration was extremely high (64000 μg l−1 or 1300 μg g−1 DW), which poses a serious health hazard to children playing on the banks of the pond. Based on our results and pond characteristics, we propose combined sediment dredging and Phoslock® addition, fish removal and strong reduction of duck feeding by the neighborhood as most promising measures controlling cyanobacterial hazards in this pond.  相似文献   

9.
The fate of N-nitrosomorpholine (NMOR) was evaluated at microgram and nanogram per litre concentrations. Experiments were undertaken to simulate the passage of groundwater contaminants through a deep anaerobic pyritic aquifer system, as part of a managed aquifer recharge (MAR) strategy. Sorption studies demonstrated the high mobility of NMOR in the Leederville aquifer system, with retardation coefficients between 1.2 and 1.6. Degradation studies from a 351 day column experiment and a 506 day stop-flow column experiment showed an anaerobic biologically induced reductive degradation process which followed first order kinetics. A biological lag-time of less than 3 months and a transient accumulation of morpholine (MOR) were also noted during the degradation. Comparable half-life degradation rates of 40-45 days were observed over three orders of magnitude in concentration (200 ng L−1 to 650 μg L−1). An inhibitory effect on microorganism responsible to the biodegradation of NMOR at 650 μg L−1 or a threshold effect at 200 ng L−1 was not observed during these experiments.  相似文献   

10.
Cyanobacterial blooms are a frequent phenomenon in eutrophic freshwaters worldwide and are considered potential hazards to ecosystems and human health. Monitoring strategies based on conventional sampling often fail to cover the marked spatial and temporal variations in cyanobacterial distribution and fluctuating toxin concentrations inherent to cyanobacterial blooms. To deal with these problems, we employed a multi-scale approach for the study of a massive Microcystis bloom in Tajo River (Spain) utilizing 1) remote sensing techniques, 2) conventional water sampling and 3) analysis of chemotypical subpopulations. Tajo River at the study area is influenced by high temperatures waters diverted upstream from a nuclear power plant, the presence of a dam downstream and a high nutrient load, which provide optimal conditions for massive cyanobacterial proliferation. MERIS imagery revealed high Chl-a concentrations that rarely fell below 20 μg L−1 and moderate spatiotemporal variations throughout the study period (March-November 2009). Although the phytoplanktonic community was generally dominated by Microcystis, sampling points highly differed in cyanobacterial abundance and community composition. Microcystin (MC) concentrations were highly heterogeneous, varying up to 3 orders of magnitude among sampling points, exceeding in some cases WHO guideline values for drinking and also for recreational waters. The analysis of single colonies by MALDI-TOF MS revealed differences in the proportion of MC-producing colonies among points. The proportion of toxic colonies showed a highly significant linear correlation with total MC: biovolume ratio (r2 = 0.9; p < 0.001), evidencing that the variability in toxin concentrations can be efficiently addressed by simple analysis of subpopulations. We propose implementing a multi-scale monitoring strategy that allows covering the spatiotemporal heterogeneities in both cyanobacterial distribution (remote sensing) and MC concentrations (subpopulation analysis) and thereby reduce the main sources of uncertainty in the assessment of the risks associated to bloom events.  相似文献   

11.
Y Zhao  Z Yang  X Xia  F Wang 《Water research》2012,46(17):5635-5644
Shallow lake eutrophication has been an important issue of global water environment. Based on the simulation and field sampling experiments in Baiyangdian Lake, the largest shallow lake in North China, this study proposed a shallow lake remediation regime with Phragmites australis (reed) incorporating its opposite effects of nutrient removal and water evapotranspiration on water quality. The results of simulation experiments showed that both total nitrogen (TN) and phosphorus (TP) removal efficiencies increased with the increasing reed coverage. The TN removal efficiencies by reed aboveground uptake and rhizosphere denitrification were 11.2%, 13.8%, 22.6%, 28.4%, and 29.6% for the reed coverage of 20%, 40%, 60%, 80%, and 100%, respectively. Correspondingly, TP removal efficiencies by aboveground reed uptake were 1.4%, 2.5%, 4.4%, 7.4% and 7.9%, respectively. However, the water quality was best when the reed coverage was 60% (72 plants m−2). This was due to the fact that the concentration effect of reed evapotranspiration on nutrient increased with reed coverage. When the reed coverage was 100% (120 plants m−2), the evapotranspiration was approximately twice that without reeds. The field sampling results showed that the highest aboveground nutrient storages occurred in September. Thus, the proposed remediation regime for Baiyangdian Lake was that the reed coverage should be adjusted to 60%, and the aboveground biomass of reeds should be harvested in each September. With this remediation regime, TN and TP removal in Baiyangdian Lake were 117.8 and 4.0 g m−2, respectively, and the corresponding removal efficiencies were estimated to be 49% and 8.5% after six years. This study suggests that reed is an effective plant for the remediation of shallow lake eutrophication, and its contrasting effects of nutrient removal and evapotranspiration on water quality should be considered for establishing the remediation regime in the future.  相似文献   

12.
1,4-Dioxane biodegradation was investigated in microcosms prepared with groundwater and soil from an impacted site in Alaska. In addition to natural attenuation conditions (i.e., no amendments), the following treatments were tested: (a) biostimulation by addition of 1-butanol (a readily available auxiliary substrate) and inorganic nutrients; and (b) bioaugmentation with Pseudonocardia dioxanivorans CB1190, a well-characterized dioxane-degrading bacterium, or with Pseudonocardia antarctica DVS 5a1, a bacterium isolated from Antarctica. Biostimulation enhanced the degradation of 50 mg L−1 dioxane by indigenous microorganisms (about 0.01 mg dioxane d−1 mg protein−1) at both 4 and 14 °C, with a simultaneous increase in biomass. A more pronounced enhancement was observed through bioaugmentation. Microcosms with 50 mg L−1 initial dioxane (representing source-zone contamination) and augmented with CB1190 degraded dioxane fastest (0.16 ± 0.04 mg dioxane d−1 mg protein−1) at 14 °C, and the degradation rate decreased dramatically at 4 °C (0.021 ± 0.007 mg dioxane d−1 mg protein−1). In contrast, microcosms with DVS 5a1 degraded dioxane at similar rates at 4 °C and 14 °C (0.018 ± 0.004 and 0.015 ± 0.006 mg dioxane d−1 mg protein−1, respectively). DVS 5a1 outperformed CB1190 when the initial dioxane concentration was low (500 μg L−1, which is representative of the leading edge of plumes). This indicates differences in competitive advantages of these two strains. Natural attenuation microcosms also showed significant degradation over 6 months when the initial dioxane concentration was 500 μg L−1. This is the first study to report the potential for dioxane bioremediation and natural attenuation of contaminated groundwater in sensitive cold-weather ecosystems such as the Arctic.  相似文献   

13.
In the present study the degradation kinetics and mineralization of diclofenac (DCF) by the TiO2 photocatalysis were investigated in terms of UV absorbance and COD measurements for a wide range of initial DCF concentrations (5-80 mg L−1) and photocatalyst loadings (0.2-1.6 g TiO2 L−1) in a batch reactor system. A set of bioassays (Daphnia magna, Pseudokirchneriella subcapitata and Artemia salina) was performed to evaluate the potential detoxification of DCF. A pseudo-first-order kinetic model was found to fit well most of the experimental data, while at high initial DCF concentrations (40 and 80 mg L−1) and at 1.6 g TiO2 L−1 photocatalyst loading a second-order kinetic model was found to fit the data better. The toxicity of the treated DCF samples on D. magna and P. subcapitata varied during the oxidation, probably due to the formation of some intermediate products more toxic than DCF. Unicellular freshwater algae was found to be very sensitive to the treated samples as well as the results from D. magna test were consistent to those of algae tests. A. salina was not found to be sensitive under the investigated conditions. Finally, UV absorbance analysis were found to be an useful tool for a fast and easy to perform measurement to get preliminary information on the organic intermediates that are formed during oxidation and also on their disappearance rate.  相似文献   

14.
A sampling campaign was carried out for n-chloridazon (n-CLZ) and its degradation product desphenyl-chloridazon (DPC) in the Hesse region (Germany) during the year 2007: a total of 548 environmental samples including groundwater, surface water and wastewater treatment plant (WWTP) effluent were analysed. Furthermore, aerobic degradation of n-CLZ has been studied utilising a fixed bed bioreactor (FBBR).In surface water, n-CLZ was detected at low concentrations (average 0.01 ± 0.06 μg L−1; maximum 0.89 μg L−1) with a seasonal peak, whereas DPC was present throughout the year at much higher concentrations (average 0.72 ± 0.81 μg L−1; maximum 7.4 μg L−1). Higher n-CLZ concentrations were observed in the North compared with South Hesse, which is ascribed to a higher density of agricultural areas. Furthermore, methylated DPC (Me-DPC), another degradation product, was detected in surface water.In the degradation test, n-CLZ was completely converted to DPC at all concentrations tested (Me-DPC was not formed under the test conditions). DPC was resistant to further degradation during the whole experimental period of 98 days. The results obtained suggest persistence and high dispersion of DPC in the aquatic environment.  相似文献   

15.
Microcystis aeruginosa has quickly risen in infamy as one of the most universal and toxic bloom-forming cyanobacteria. Here we presented a species of golden alga (Poterioochromonas sp. strain ZX1), which can feed on toxic M. aeruginosa without any adverse effects from the cyanotoxins. Using flow cytometry, the ingestion and maximal digestion rates were estimated to be 0.2∼1.2 and 0.2 M. aeruginosa cells (ZX1 cell)−1 h−1, respectively. M. aeruginosa in densities below 107 cells mL−1 could be grazed down by ZX1, but no significant decrease was observed when the initial density was 3.2 × 107 cells mL−1. ZX1 grazing was a little influenced by the light intensity (0.5∼2500 lx) and initial pH of the medium (pH = 5.0∼9.5). ZX1 could not survive in continuous darkness for longer than 10 days. The pH value was adjusted to 8 by ZX1 while to 10 by M. aeruginosa. This study may shed light on understanding the ecological interactions between M. aeruginosa and mixotrophic Poterioochromonas sp. in aquatic ecosystems.  相似文献   

16.
Different environmental conditions support optimal growth by Aphanizomenon and Microcystis in Ford Lake, Michigan, USA, based on weekly species biovolume and water chemistry measurements from June through October 2005-2007. Experimental withdrawal of hypolimnetic water through the outlet dam was conducted in 2006, with 2005 and 2007 acting as control years, to test theory regarding management of nuisance and toxic cyanobacteria. The dynamics of Aphanizomenon and Microcystis blooms in Ford Lake appear to be driven largely by NO3 concentrations, with higher levels shifting the advantage to Microcystis (P < 0.0001). Aphanizomenon was most successful with a mean TN:TP ratio (mol:mol) of 48.3:1, whereas Microcystis thrived with a mean ratio of 70.1:1. Withdrawal of hypolimnetic water successfully destabilized the water column and led to higher levels of NO3 and the near elimination of the Aphanizomenon bloom in 2006 (P < 0.0001). Selective withdrawal did not reduce Microcystis biovolume or microcystin toxicity. Microcystis biovolume and NO3 levels were positively correlated with microcystin toxin (P = 0.01) and jointly accounted for 30.5% of the variability in the data. Selective withdrawal may be a viable management option for improving water quality under certain circumstances. To fully address the problem of nuisance and toxic algal blooms in Ford Lake, however, an integrated approach is required that targets cyanobacteria biovolume dynamics as well as conditions suited for toxin production.  相似文献   

17.
Liu Z  Cui F  Ma H  Fan Z  Zhao Z 《Water research》2011,45(19):6489-6495
Algae are one of the most important disinfection by-product (DBP) precursors in aquatic environments. The contents of DBP precursors in algae are influenced by not only environmental factors but also some xenobiotics. Trihalomethane formation potential (THMFP) in both the separate and interactive pollution of Microcystis aeruginosa and Nitrobenzene (NB) was investigated in batch experiment to discover the effects of xenobiotics on the yield of DBP precursors in the algal solution. The results show that in the separate NB solution, NB did not react with Cl2 to form trihalomethane (THM), whereas in the algae solution, THMFP had a significant positive linear correlation with M. aeruginosa density in both solution and extracellular organic matter (EOM). The correlation coefficients were 0.9845 (p = 3.567 × 10−4) and 0.9854 (p = 1.406 × 10−4), respectively. According to regression results, about 77.9% of the total THMFP came from the algal cells, while the rest came from EOM. When the interactive pollution of M. aeruginosa and NB occurred, the growth of algae was inhibited by NB. The density of M. aeruginosa in a high concentration NB solution (280 μg/L) was only 71.1% of that in the solution without NB after 5 days of incubation. However, THMFP in the mixture (algae and NB) and the EOM did not change significantly, and the productivity of THMFP by the algae (THMFP/108cells) increased with the increase in NB concentration. There was a significant linear correlation between THMFP/108cell and NB concentration (r = 0.9117, p < 0.01), which shows the contribution of the algae to THM formation was enhanced by NB. This result might be caused by the increased protein productivity and the biodegradation of NB by M. aeruginosa.  相似文献   

18.
Control of biofouling and its negative effects on process performance of water systems is a serious operational challenge in all of the water sectors. Molecularly capped silver nanoparticles (Ag-MCNPs) were used as a pretreatment strategy for controlling biofilm development in aqueous suspensions using the model organism Pseudomonas aeruginosa. Biofilm control was tested in a two-step procedure: planktonic P. aeruginosa was exposed to the Ag-MCNPs and then the adherent biofilm formed by the surviving cells was monitored by applying a model biofilm-formation assay. Under specific conditions, Ag-MCNPs retarded biofilm formation, even when high percentage of planktonic P. aeruginosa cells survived the treatment. For example, Ag-MCNPs (10 μg mL−1) retarded biofilm formation (>60%), when 50 percent of the planktonic P. aeruginosa cells survived the treatment. Moreover, stable low value of relative biomass has been formed in the presence of fixed Ag-MCNPs concentrations at various biofilm incubation times. Our results showed that Ag-MCNPs pretreated cells were able to produce EPS although they succeeded to form relatively low adherent biofilm. These pretreated cells appear well preserved and undamaged under TEM HPH/freeze micrographs, yet the intra cellular material seems to be pushed towards the peripheral parts of the cell, possibly indicating a survival strategy to the presence of Ag-MCNPs. The lower value of relative biomass formed in the presence of Ag-MCNPs could be associated with molecular mechanisms related to biofilm formation or continuous release of silver ions in the sample. However, further research is required to examine these factors.  相似文献   

19.
This is the first to conduct simultaneous determination of microcystin (MC) contaminations in multi-groups of vertebrates (fish, turtle, duck and water bird) from Lake Taihu with Microcystis blooms. MCs (-RR, -YR, -LR) in Microcystis scum was 328 μg g− 1 DW. MCs reached 235 μg g− 1 DW in intestinal contents of phytoplanktivorous silver carp, but never exceeded 0.1 μg g− 1 DW in intestinal contents of other animals. The highest MC content in liver of fish was in Carassius auratus (150 ng g− 1 DW), followed by silver carp and Culter ilishaeformis, whereas the lowest was in common carp (3 ng g− 1 DW). In livers of turtle, duck and water bird, MC content ranged from 18 to 30 ng g− 1 DW. High MC level was found in the gonad, egg yolk and egg white of Nycticorax nycticorax and Anas platyrhynchos, suggesting the potential effect of MCs on water bird and duck embryos. High MC contents were identified for the first time in the spleens of N. nycticorax and A. platyrhynchos (6.850 and 9.462 ng g− 1 DW, respectively), indicating a different organotropism of MCs in birds. Lakes with deaths of turtles or water birds in the literatures had a considerably higher MC content in both cyanobacteria and wildlife than Lake Taihu, indicating that toxicity of cyanobacteria may determine accumulation level of MCs and consequently fates of aquatic wildlife.  相似文献   

20.
Flow-through reactors with manganese oxides were examined for their capacity to remove 17α-ethinylestradiol (EE2) at μg L−1 and ng L−1 range from synthetic wastewater treatment plant (WWTP) effluent. The mineral MnO2 reactors removed 93% at a volumetric loading rate (BV) of 5 μg EE2 L−1 d−1 and from a BV of 40 μg EE2 L−1 d−1 on, these reactors showed 75% EE2 removal. With the biologically produced manganese oxides, only 57% EE2 was removed at 40 μg EE2 L−1 d−1. EE2 removal in the ng L−1 range was 84%. The ammonium present in the influent (10 mg N L−1) was nitrified and ammonia-oxidizing bacteria (AOB) were found to be of prime importance for the degradation of EE2. Remarkably, EE2 removal by AOB continued for a period of 4 months after depleting NH4+ in the influent. EE2 removal by manganese-oxidizing bacteria was inhibited by NH4+. These results indicate that the metabolic properties of nitrifiers can be employed to polish water containing EE2 based estrogenic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号