首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
时栅运用到全闭环数控转台作位置检测传感器时,需采用时空变换算法将时栅的时域信息转换成空域信息。利用时间序列对时栅数控转台的动态特性进行建模,依据一系列过去测量值预测下一采样时刻角位移,将原本等时采样的绝对式角位移转换为全闭合数控系统需求的等空间增量式连续脉冲。介绍了动态模型选择标准、参数估计、模型检验的原理和算法。采用当前预测值对上一次预测误差进行实时修正,以消除累计误差保证测量精度。实验证明了采用动态模型预测算法能保证动态数控角位移测量误差控制在±3″以内,实现了精密动态全闭环角位移测量。  相似文献   

2.
时栅数控转台空间回转位置预测方法研究   总被引:4,自引:0,他引:4  
时栅传感器利用时空变换技术将空域信息变换到时域,以时间测量空间位移.为了研制高精度时栅数控转台,减少动态位置反馈误差,提出了一种回转位置预测测量新方法,利用时空变换技术将时域信息返回到空域.利用时间序列理论对时栅测量值进行建模,从而预测出数控转台未来一段时间内的位置值,并利用当前测量值对前一次的预测误差进行实时修正.介绍了测量数据建模方法和预测系数估计算法.为了验证位置预测方法的有效性,设计了一套动态实验系统.实践证明,数控转台的角位移预测误差为±2″,实现了精密位置预测.  相似文献   

3.
针对目前绝对直线场式时栅无法满足全闭环数控系统要求的增量式直线位移反馈的问题,采用测量基准转换方式从时间域的角度处理绝对直线场式时栅的空间位移信息,运用时间序列算法分析绝对式时栅采样数据序列的内在相关性,建立自适应递推算法。通过时间触发采样将时栅传感器过去的测量数据作为样本集,递推时栅下一个采样时刻的位移,在下一个采样周期内将直线时栅的绝对位移代表的增量式时间脉冲通过脉宽调制的方式连续发出,实现绝对式直线时栅到增量式直线时栅位移传感器的转换设计。实验表明在76.604 mm的范围内增量式直线时栅位移传感器达到±2μm的测量精度。此研究可将原绝对式直线时栅位移传感器运用于全闭环增量式直线运动数控系统,具有重要现实意义。  相似文献   

4.
为了将时栅应用于全闭环数控系统,需完成时栅信号由时域到空域的转换。通过BP神经网络预测模型找出实测数据中的隐含规律进而建立起样本和未来实测数据的映射关系,预测出下一个周期内时栅的测量角度值,实现时栅绝对式角度值与光栅数控系统所需的增量式连续脉冲的转换;为了保证测量精度,利用当前测量值对上一次的预测误差进行校正。实验表明:基于BP神经网络预测算法的时栅系统可以实现时域信号向空域信号的转换,且误差精度为±2″,满足了数控系统对测量精度的要求。  相似文献   

5.
针对支持向量回归机在预测铣刀寿命时惩罚参数和核函数参数难确定、不同的参数设置对预测效果影响较大的问题,提出了自适应变异粒子群算法。在支持向量回归算法的基础上,引入AMPSO优化SVR参数,建立AMPSO与SVR相结合的数控铣刀寿命预测模型。通过硬质合金钢铣刀铣削的实验验证表明,相比于网格搜索法和神经网络算法,AMPSO-SVR算法在测试样本集的平均相对预测误差低至0.72%,相较前两者预测误差更小,可准确预测数控铣刀寿命,为数控加工过程中的换刀决策提供依据。  相似文献   

6.
文中以时栅传感器作为CNC系统的位置检测元件,为了解决时栅数控转台在高精度伺服控制过程中的动态位置反馈误差问题,研究了利用AR模型对转台位置进行预测测量的方法。介绍了预测测量的原理、预测方法及其模型系数的求解方法,并搭建了一套实验装置。经实验表明,基于AR模型的转台位置预测测量方法正确可行,通过修正后预测误差为±2″.  相似文献   

7.
动态测量下的谐波误差成分是制约高精度、高分辨率的时栅角位移传感器在动态测量领域运用的主要原因之一。针对动态测量下时栅角位移传感器中的谐波抑制难题,首先简述了时栅角位移传感器的系统模型,其次建立了时栅角位移传感器的动态误差数学模型,之后解释了传感器的动态误差产生机理,阐述了自适应卡尔曼滤波的基本原理,最后构建了基于自适应卡尔曼滤波的时栅角位移传感器的动态误差抑制模型。通过仿真分析证明了时栅角位移传感器在匀速和变速运行情况下,经自适应卡尔曼滤波后,动态误差均降低了约70%,且随着传感器转速的提高,对谐波误差的抑制效果越明显。在实验运用中,该滤波算法对时栅角位移传感器的测量值有很好的实时预测性,传感器能够更快速且稳定运行,在100 r/min的转速下测量误差降低约80%。结果证实了自适应卡尔曼滤波在时栅角位移传感器的动态谐波误差抑制中有着显著的作用,能极大地提高传感器的动态测量精度。  相似文献   

8.
为了提高数控回转工作台的控制精度,利用高精度时栅角位移传感器作为测角元件,实时测出转台的实际角位移并将其作为反馈信号,以ARM处理器做为数控系统的核心器件,实现了全闭环的转台数控系统。该系统通过机械传动比细分的方法,解决了在步进电动机步距角细分不足的情况下,实现高精度控制。实验证明该系统具有运行稳定,定位精度高等优点,在机加工领域有较好的应用前景。  相似文献   

9.
采用"时域信号、空域分析"的思想,将时栅位移传感器输出的按时采样的角位移传感器信号转换成按空间均分的角位移信号,实现了用时栅替代等空间采样的光栅作为检测元件应用于传动误差测量。搭建了试验装置,绘制了试验的传动误差曲线,由曲线频谱图,分析、确定了误差的主要产生环节。证明了用时栅代替光栅测量传动误差是行之有效的。该研究不仅实现了用成本低廉的时栅代替光栅,而且克服了课题组前期开发的传动误差测试系统的采样不稳定性和速率不同步性带来的误差。  相似文献   

10.
分析时栅式直驱转台位置反馈存在的动态位置反馈误差。提出利用预测测量方法,将时栅绝对式离散角度测量值转化为增量式连续脉冲信号。研制时栅式直驱转台位置反馈与控制智能接口电路,实现空间位置预测测量。开展预测实验,测得直驱转台空间位置的动态预测误差为!4″,表明时栅可以满足直驱转台高精度的要求。  相似文献   

11.
基于时栅的直驱转台是一种新型零传动数控转台,可分析直驱系统的误差源。利用齐次坐标变换的方法分析并给出了转台转动副的几何误差模型,并根据摩擦与速度的稳态关系建立Stribeck摩擦的数学模型。本文进行的误差分析和误差建模可为其它类型的多轴转台的误差建模研究提供参考。  相似文献   

12.
针对现有高精度位移传感器栅距小导致对制造和使用环境要求苛刻的问题,提出一种采用高频时钟脉冲作为测量基准,可在大极距条件下实现高精度、大量程直线位移测量的变耦型时栅位移传感器。传感器通过在交变电磁场中改变励磁线圈和磁场拾取线圈的耦合状态建立以时间差反映位移变化的行波信号,实现精密位移测量。通过有限元分析软件对传感器进行了建模和仿真,根据仿真结果得到传感器仿真模型的测量误差,并对其进行了谐波分析;根据误差特点和变化规律对主要误差进行了溯源,并对模型进行了优化。根据优化模型制作了传感器实物,开展了验证实验。实验结果表明:根据仿真结果对传感器进行优化设计,在200 mm的测量范围内,传感器精度达到±500 nm,且系统成本低廉,极易制造。为时栅位移传感器在恶劣环境中的应用提供了解决方案和理论依据。  相似文献   

13.
根据时栅传感器的测量原理,提出一种采用高频时钟脉冲作为测量基准的变耦型时栅位移传感器以提高位移测量的精度。该传感器通过改变激励线圈和感应线圈的耦合状态输出感应位移变化的行波信号来实现精密位移测量。进行了建模和仿真,研究了不同测头姿态下传感器的位移误差特性,并对其进行了谐波分析,得到了不同测头姿态对位移测量误差各次谐波的影响规律。根据传感器模型制作了传感器并开展了验证实验。仿真和实验结果均表明:不同测头姿态对位移测量误差的影响主要体现在对测量误差的1次、2次和4次谐波上,且俯仰姿态引入的附加误差最大,其余测头姿态下引入的位移测量附加误差均较小。若保证较佳的测头姿态,传感器在定尺和动测头间气隙厚度为0.3mm时的原始误差约为±18μm。实验分析结果与仿真结果基本一致。  相似文献   

14.
针对现有时栅角位移传感器采用漆包线绕制工艺加工线圈,导致线圈布线不均且容易随时间发生变化进而影响测量精度的问题,提出一种基于PCB技术的新型时栅角位移传感器。该传感器通过在PCB基板的不同层上布置特定形状的激励线圈和感应线圈,形成两个完全相同并沿圆周空间正交的传感单元;当在两传感单元的激励线圈中分别通入时间正交的两相激励电流后,通过导磁定子基体和具有特定齿、槽结构的导磁转子对传感单元内的磁场实施精确约束,使两传感单元的感应线圈串联输出初相角随转子转角变化的正弦感应信号;最后通过高频时钟脉冲插补初相角实现精密角位移测量。利用有限元分析软件对传感器进行了建模和仿真。根据仿真模型制作了传感器实物,开展了验证实验,并对实验中角位移测量误差的频次和来源进行了详细分析。经过标定和补偿,最终获得了整周范围内误差在-2.82″~2.02″的时栅角位移传感器。理论推导、仿真分析和实验验证均表明,该传感器不仅能实现精密角位移测量,还能在激励线圈和感应线圈空间极距和信号质量不变的情况下,将位移测量的分辨力从信号源头提高1倍,且结构简单稳定、极易实现,特别适用于环境恶劣的工业现场。  相似文献   

15.
为了提高寄生式时栅传感器的测量精度,分析了它的工作原理和动态误差组成,得到其主要误差分量为常值误差、周期误差和随机误差等。针对寄生式时栅误差特点,建立了寄生式时栅动态误差高精度预测模型,并与其他建模方法进行了比较。选用插入标准值的贝叶斯预测模型,以实际测量的传感器第一个对极动态误差数据进行建模,在后续对极特定位置插入部分实际误差测量数据,建立误差预测模型,预测了传感器后83个对极的动态误差。另选用三次样条插值和BP神经网络建模方法对寄生式时栅整圈动态误差建模,并与建立的误差模型进行了对比。验证实验表明,三次样条插值建模时间最短(0.62s),但其建模精度不高(16.050 0″);贝叶斯动态模型建模时间(0.86s)略长于三次样条插值,但建模精度最高(0.415 3″);BP神经网络建模时间最长(32min),但建模精度最低(19.680 2″)。同时贝叶斯插入标准值建模方法所需数据点(69395个)远少于三次样条和BP神经网络建模数据点(235526个),节省了大量的标定时间和建模数据量,因此可用于寄生式时栅传感器的动态测量误差高精度建模修正。  相似文献   

16.
为了提高寄生式时栅行波信号的质量和传感器的测角精度,研究了离散式测头安装误差对传感器测角精度的影响。介绍了寄生式时栅的结构组成和工作原理,建立了三维仿真模型,应用Ansoft Maxwell仿真软件对测头与转子不同间隙、测头的俯仰角和偏摆角大小变化对传感器测角精度的影响进行了仿真实验分析,同时应用84对级的寄生式时栅搭建实验平台进行了实际实验验证。仿真和实验结果显示:安装误差中的间隙、俯仰角、测头的偏摆角等因素变化对传感器测量精度均有影响。间隙变化对测量精度的影响具有规律,可通过建模进行修正。实验所用的84对级的寄生式时栅最佳安装间隙大小为0.2mm。俯仰角、偏摆角的变化对测量精度的影响规律变化较复杂,故文中建立了相应的误差补偿模型。本文的研究结果可用于指导传感器的结构优化设计、测头的安装和误差精确补偿,进而提高传感器的测角精度。  相似文献   

17.
为了解决时栅角位移传感器的动态测量问题,在基于静态的时栅位移传感器电磁仿真的基础上,通过引入运动单元模块,建立了时栅位移传感器的动态电磁仿真模型。通过分析时栅位移传感器的感应电动势幅值信号和感应频率信号,得到了动态条件下的时栅位移传感器感应电动势幅值和频率与转子转速的关系,并测算了磁场式时栅位移传感器在激励频率为400Hz的情况下,理论上能够达到的极限转速为8r/min。实验结果表明,转子转速在0~8r/min时传感器动态误差为±1.4″,速度超过8r/min时传感器精度开始恶化,转子转速为10r/min时传感器误差为±8.2″。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号