首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
对以修饰MnO_2(CM MnO_2)作正极材料的二次碱锰电池的研究结果表明:通过对MnO_2的合理修饰,可以明显改善MnO_2的可充性,从而提高二次碱锰电池的深度放电能力和充电速度.AA型样品电池初始容量达到1100mAh,滥用条件下全充放循环寿命可达15周期以上.文中初步讨论了修饰MnO_2可充性得到改善的原因.  相似文献   

2.
Li-LiCoO_2蓄电池循环寿命及交流阻抗研究   总被引:6,自引:1,他引:6  
通过优化合成LiCoO_2工艺条件,制备出具有高结晶层状结构的LiCoO_2晶体,提高了Li-LiCoO_2电池的电性能和循环寿命,第一次充放电容量分别为150mAh/8和140mAh/g,60%DOD条件下电池循环寿命超过270次.电池交流阻抗的测量结果显示了电极和电液对电池循环寿命的影响.电池循环次数增加,阴极反应电阻缓慢增大.当循环次数达100次左右时,锂阳极和电液的电阻成为电池阻抗的主要部分,限制了循环充放性能,其原因是电波氧化分解,锂阳极表面生成一层钝化膜.  相似文献   

3.
采用氧化聚合的方式合成了锂离子电池正极材料PTPAn。通过XRD、FT-IR、C-V、恒电流充放与循环寿命等测试研究了PTPAn的产物结构以及电化学性能。研究表明,PTPAn作为锂离子电池正极材料有着良好的电化学性能,首次放电容量达到101.34mAh/g,并且循环性能良好。  相似文献   

4.
高温固相法合成Na_(0.44)MnO_2,分别与纳米粒状乙炔黑(cb)和中孔管状线性碳纳米管(CNT)进行非原位复合,探讨了导电剂种类、分散方式和加入量对Na_(0.44)MnO_2/C复合电极在含锌、锰离子中性水溶液中电化学性能的影响。结果表明,Na_(0.44)MnO_2与碳纳米管复合宜采用液相搅拌方式,而乙炔黑与Na_(0.44)MnO_2复合则更适宜采用机械混合方式。与Na_(0.44)MnO_2/cb复合电极相比,Na_(0.44)MnO_2/CNT复合电极具有更优的动力学特征,突出表现为大电流充放性能明显改善,且低电流密度下易获得高的起始放电比容量,且随循环次数的增加,可较快地增至稳定(~300 mAh/g,100 mA/g);添加量增大,电极性能得以进一步改善,但容量并未成比例地提高。  相似文献   

5.
MnO_2电极可充性问题的探讨(上)   总被引:5,自引:1,他引:4  
本文综述了碱性Zn/MnO_2电池中MnO_2电极的可充性问题,分析了各种影响因素,并评价了利用改性添加物来改善MnO_2电极循环寿命的可行性。  相似文献   

6.
NaO_(0.44)MnO_2具有开放的框架和三维隧道结构,是一种优良的钠离子电池正极材料。采用固相法制备了Al~(3+)掺杂的Na_(0.44)MnO_2,并通过形貌、结构分析以及各种电化学手段研究了Al~(3+)掺杂对Na_(0.44)MnO_2材料储钠性能的影响。研究结果表明,适量的Al~(3+)掺杂能有效提高Na_(0.44)MnO_2材料的倍率和循环性能。Al~(3+)掺杂量为1%(Al与Mn的摩尔比为0.01:0.99)的样品在30 C(1 C=120 mA/g)的电流密度下具有76.5 mAh/g的放电比容量,且在1 C下循环1 000次之后容量保持率高达70.0%。相比之下,未掺杂的样品在30 C下的比容量仅有45.7 mAh/g,且在1 C下循环1 000次之后容量保持率仅为47.0%。这些结果表明掺杂Al~(3+)能够在一定程度上提高Na_(0.44)MnO_2在循环过程中的稳定性,提高Na~+在Na_(0.44)MnO_2中的嵌入/脱出反应速度,为发展高容量和高稳定性钠离子电池正极材料提供了一种新途径。  相似文献   

7.
用溶剂热法制备绒球状钴酸锌(ZnCo_2O_4)/碳纳米管(CNT)复合材料。用XRD、SEM技术分析物相和形貌,用恒流充放电及循环伏安法测试电化学性能。添加CNT使ZnCo_2O_4呈多孔结构,可提高作为锂离子电池负极材料的电化学性能。以500 mA/g的电流在0.01~3.00 V循环,ZnCo_2O_4/CNT的首次充、放电比容量分别为1 002.3 mAh/g、1 284.9 mAh/g,首次库仑效率达78.00%;第50次循环的充、放电比容量分别为1 197.2 mAh/g、1 209.8 mAh/g,库仑效率达98.96%。  相似文献   

8.
微波法合成正极材料Li3V2(PO4)3   总被引:13,自引:5,他引:8  
任慢慢  李宇展  周震  高学平  阎杰 《电池》2006,36(1):13-14
用微波法合成了锂离子电池正极材料Li3V2(PO4)3。XRD、充放电和循环伏安测试表明:在900℃下恒温11 min,合成的样品结晶度好、无杂相,0.2C时,使用该材料的电池首次循环的充、放电容量分别为177.1 mAh/g和145.7 mAh/g,循环50次后,放电容量为98 mAh/g。当充电到4.9 V时,Li3V2(PO4)3存在4个充电平台,且有较高的放电平台。  相似文献   

9.
张贝贝  孙大伟  汝强  侯贤华 《电池》2013,43(1):9-11
以酸处理的中间相炭微球(MCMB)为载体,先用液相法在MCMB表面生成少量二氧化锡(SnO2),再以水热法在MCMB表面生长SnO2纳米棒,合成SnO2包覆MCMB的核壳结构材料.用XRD、SEM和透射电镜(TEM)测试对材料进行分析,用恒流充放电和循环伏安实验对材料进行研究.以100 mA/g的电流在0.001~ 2.000 V循环,材料的首次充、放电比容量分别为1 038.4 mAh/g和1 577.6 mAh/g,第25次循环的放电比容量为581.9 mAh/g.  相似文献   

10.
在浓NaOH溶液中电解铁电极所得Na2FeO4阳极液制备出电池级的K2FeO4,在一次性Al/KOH/K2FeO4实验电池中,K2FeO4的放电容量可达215mAh/g,利用率可达53%.0.0~0.8V(vs.Hg/HgO)范围内的循环伏安实验结果表明:K2FeO4的充放循环次数可达300~600次.高铁正极的容量利用率及自放电率与K2FeO4的纯度关系密切.  相似文献   

11.
采用液相共沉淀法制备了掺杂Bi_2O_3的锌酸钙粉末。X射线衍射测试表明,共沉淀的Bi没有进入锌酸钙的晶格而是以Bi_2O_3的形式析出并部分沉积在锌酸钙表面。恒电流充放电测试结果表明,Bi_2O_3在首次充电时能够转化为金属Bi并稳定存在于锌酸钙电极中。与未掺杂电极相比,掺杂10%(质量分数)Bi_2O_3后,锌酸钙电极的0.2 C比容量由391m Ah/g提高至433 m Ah/g,1 C比容量由372 m Ah/g提高至389 m Ah/g,3 C比容量由312 m Ah/g提高至330 m Ah/g,1 C循环30次后容量保持率由61%提高到92%。  相似文献   

12.
控制结晶法制备球形锰酸锂的研究   总被引:4,自引:0,他引:4  
采用控制结晶法制备出球形MnCO3前驱体,经预处理后得到多孔隙球形Mn2O3,与Li2CO3研磨混料,高温煅烧合成了结晶完整的球形尖晶石型LiMn2O4。比较了普通高温固相法与控制结晶法对锰酸锂电化学性能的影响,结果表明,后者制备得到的球形锰酸锂具有更高的可逆容量和更好的循环稳定性能。常温下,普通高温固相法合成的锰酸锂初始放电比容量为129.12mAh/g,100次循环后容量保持率仅77.38%。而准确化学计量的球形锰酸锂初始放电比容量为129.40mAh/g,100次循环后,容量保持率为95.28%;富锂球形锰酸锂首次放电比容量为116.28mAh/g,经150次充放电循环后,放电比容量为112.95mAh/g,容量衰减率为2.86%,平均每个循环仅衰减0.019%。锰酸锂的球形形貌愈完整,其电化学性能亦愈优越。  相似文献   

13.
用溶胶一凝胶法合成了掺钴的尖晶石锰酸锂Li1.05Co0.05Mn1.95O4,由于Co3+的引入使得材料结构更加稳定,循环稳定性增强.材料在0.1 C下首次放电比容量为105.2 mAh/g,循环20次后为104.3mAh/g,容量保持率为99.1%;1 C下首次放电比容量为92.4 mAh/g,循环20次后放电比容...  相似文献   

14.
采用溶胶凝胶法制备尖晶石型高电压正极材料LiNi_(0.5)Mn_(1.5)O_4,并掺杂F-与之对比。分别采用X射线衍射仪、电子扫描显微镜、热重分析仪、电化学工作站和充放电测试仪对合成材料的物相、形貌和电化学性能进行表征。结果表明,0.5C倍率下LiNi_(0.5)Mn_(1.5)O_4首次放电比容量高达141.6 mAh/g,接近于理论比容量146.7 mAh/g。提高倍率40次循环后,5C比容量仍有111.8 mAh/g,而F-掺杂样品仅有92 mAh/g。然后从5C返回到1C,比容量为129.9 mAh/g,与1C初始容量相比,容量保持率高达96.4%,LiNi_(0.5)Mn_(1.5)O_4显示出更加优异的倍率循环性能。  相似文献   

15.
采用溶胶-凝胶法合成LiNi1/3Co1/3Mn1/3O2正极材料,对该材料的结构和电化学性能进行了测试。研究结果表明:LiNi1/3Co1/3Mn1/3O2材料在20℃、45℃、65℃条件下首次放电容量分别为138.2mAh/g、129.7 mAh/g、97.75 mAh/g,20周循环后容量保持率分别为94.5%、92.2%、87.8%,表明该材料具有优越的循环性能和高温稳定性能。  相似文献   

16.
采用共沉淀法得到前驱体M(OH)2(M=Ni、Co、Mn)后与氢氧化锂(LiOH·H2O)进行高温固相反应得到锂离子电池正极材料Li[Li0.20Ni0.128Co0.136Mn0.536]O2,并对该材料进行Al2O3包覆.通过X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)和电化学测试手段对产物的结构、形貌以...  相似文献   

17.
采用液相共沉淀合成类球形锰镍钴氢氧化物前驱体,与锂结合生成Li[Li0.2Mn0.54Ni0.13Co0.13]O2正极材料。用X射线衍射和扫描电镜对不同温度下合成的粉末样品进行了表征,并研究了材料的电化学性能。通过不同温度条件下烧结样品的晶胞参数及电化学性能研究发现:950℃下合成的样品阳离子排列有序度最好,同时电化学性能也最好。4.2 V首次放电比容量达到157.7 mAh/g,50次循环后仍保持在136.3 mAh/g以上。4.6 V首次放电比容量达到247.9 mAh/g。  相似文献   

18.
在碱性镀液中,用脉冲电镀法制得具有单斜Ni3Sn4结构的锡镍合金负极材料.采用充放电循环实验、X射线衍射光谱法(XRD)、阻抗、环境扫描电镜(SEM)等研究了影响样品电化学性能的因素.实验结果表明,由组成为45 g/L硫酸镍、75 g/L 乙二胺四乙酸二钠、40 g/L酒石酸钾钠、250 g/L焦磷酸钾和40 g/L锡酸钠的镀液制得样品表面含有孔径为200~300 nm的孔洞.在1.5~0.01 V的电压区间,以100 mA/g的电流放电时,该样品第1次循环的放电比容量为764 mAh/g,第50次循环的放电比容量为405 mAh/g.充放电的库仑效率较高.  相似文献   

19.
用溶胶-凝胶法结合高温后退火处理合成了掺杂Cr的LiNi0.5-0.5yCryMn1.5-0.5yO4(y=0.05,0.10,0.15,0.00),通过X射线衍射(XRD)、恒流充放电测试表征了材料的结构、电化学性能。结果表明,在电压范围为3.5~5.0 V内,LiNi0.45Cr0.1Mn1.45O4电化学性能最好,首次放电容量可达136.2mAh/g,0.1 C循环20次后,容量保持率99.7%;1 C倍率循环50次后,容量仍然有116.2 mAh/g,基本不衰减,大倍率循环有良好的容量和循环性能。  相似文献   

20.
采用溶胶凝胶法合成了具有尖晶石结构的可用作锂离子蓄电池正极材料的LiMn2O4化合物,并对其进行了掺杂Th元素的修饰.对材料进行了X射线衍射、扫描电镜、红外光谱、交流阻抗、充放电等测试.实验结果表明掺入Th元素所合成的材料具有标准的尖晶石结构,规则的结晶形貌,材料颗粒分布主要在1~2 μm之间;在不同的充放电速率下,所合成的Th掺杂改性材料具有较高的放电比容量,并表现出良好的电化学可逆性及较好的大电流放电性能.在0.2 C及1 C放电速率下,首次放电比容量分别是119.9 mAh/g和118.3 mAh/g,循环20次后,容量保持率分别在98%和97%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号