首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《分离科学与技术》2012,47(16):2501-2509
Supercritical fluid extraction (SFE) was used to extract three isoflavonoids including irigenin, irisfloretin and dichtomitin from Belamcanda chinensis (L.) DC. The parameters including pressure, temperature, sample particle size, and flow rate of CO2 were optimized with an orthogonal test. Under the optimized conditions of 15 MPa, 55°C, a sample particle size of 20–40 mesh and CO2 flow rate of 40 L h?1. The process was then scaled up by 10 times using a preparative SFE system. The yield of the crude extract from SFE was 4.1%, which contained irigenin, irisfloretin, and dichtomitin 0.71%, 0.49%, and 0.05%, respectively. To compare the extraction methods, Soxhlet Extraction (SE) was performed. The results indicated that SFE was better than SE. Irigenin, irisfloretin, and dichtomitin in the SFE extract were then separated and purified by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of petroleum ether–ethyl acetate–methanol–water (2:4:3:3, v/v). From 5.0 g of dry crude extract, 27.8 mg irigenin, 16.4 mg irisfloretin, and 2.1 mg dichtomitin were obtained at purities of 97.1%, 96.4%, and 98.0%, respectively, as determined by HPLC-PDA. These results well indicate that SFE and HSCCC are very powerful techniques for the extraction and purification of irigenin, irisfloretin, and dichtomitin from B. chinensis.  相似文献   

2.
BACKGROUND: Chlorella vulgaris is a green microalgae that contains various pigment components of carotenoids and chlorophylls. Supercritical CO2 is widely used for extraction of pharmaceutical compounds because it is non‐oxic and easily separated from extracted material by simply depressurizing. In this work, pharmaceutical compounds from Chlorella vulgaris have been extracted using supercritical CO2 with or without entrainer at various extraction conditions. RESULTS: Based on high performance liquid chromatography (HPLC) analysis, the extracts contained pigment components, such as lutein, β‐carotene, chlorophyll a and b. Higher extraction pressure and temperature promoted higher lutein extraction by supercritical CO2. The optimum pressure and temperature for extraction were obtained as 50 MPa and 80 °C. Ethanol as an entrainer was more effective than acetone for the extraction of pigment components. Pigment components in the extract obtained by supercritical CO2 with and without entrainer were compared with the extract obtained by a conventional extraction method. CONCLUSION: Supercritical CO2 has been successfully applied for the extraction of pigment components from Chlorella vulgaris. Supercritical CO2 enabled high selectivity for lutein extraction; however, the lutein yield was lower than that obtained by extraction using supercritical CO2 with ethanol and soxhlet. Copyright © 2008 Society of Chemical Industry  相似文献   

3.
Total yields and compositions of sorghum dried distillers grains with solubles (DDGS) lipids obtained by supercritical CO2 (SC‐CO2) extraction were compared with those obtained by recirculated solvent extraction (RSE) with hexane. The total yield of lipids obtained by SC‐CO2 extraction at 27.5 MPa and 70 °C was 150 g lipids/kg DDGS, while the yield obtained by RSE with hexane at 69 °C was only 85 g lipids/kg DDGS. The contents of four high‐value compounds, i.e., policosanols, phytosterols, free fatty acids (FFA) and tocols, in the lipids obtained by SC‐CO2 extraction were 31.2, 15.6, 155.3 and 0.50 mg/g at 27.5 MPa and 70 °C, compared to 26.6, 9.6, 57.3 and 0.03 mg/g for RSE with hexane at 69 °C. The profiles of phytosterols and FFA in the sorghum DDGS lipids were relatively independent of the extraction methods and operating conditions.  相似文献   

4.
《分离科学与技术》2012,47(2):328-337
The effect of supercritical CO2 (SCCO2) extraction conditions (pressure and temperature) on the system performance as well as the antiradical efficiencies of the essential oils from Japanese pepper (Xanthoxylum piperitum DC.), cardamom (Elettaria cardamomum Maton), and fennel (Foeniculum vulgare) seeds were investigated. A control study with the conventional Soxhlet extraction and hydrodistillation was also conducted to compare the performance of those processes. Antiradical efficiencies were investigated by utilizing 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay with a UV-vis spectrophotometer. Higher pressure and temperature had positive effects on the supercritical process performance due to higher CO2 density and substrate solubility in SCCO2. Antiradical efficiencies of cardamom and pepper were almost the same, being significantly higher than that of fennel seeds. However, this effect decreased dramatically for all the spices when the extraction method was changed to Soxhlet extraction and hydrodistillation. SCCO2 extraction was found to yield more quality and effective essential oils than Soxhlet extraction and hydrodistillation.  相似文献   

5.
《分离科学与技术》2012,47(18):2916-2925
ABSTRACT

Linderane (LDR) and norisoboldine (NOR) are two typical active compounds in Lindera aggregate (Sims.) Kosterm. In this study, a new method of sequential extraction of LDR and NOR from L. aggregate was developed by supercritical fluid extraction (SFE) and ionic liquid-based ultrasonic-assisted extraction (IL-UAE) for the first time. The suitable SFE with CO2 conditions for LDR were 60 min dynamic extraction time, 40°C temperature and 30 MPa pressure. And the optimal IL-UAE factors for NOR were 2.06 mol/L 1-butyl-3-methylimidazolium bromide ([Bmim] Br) aqueous solution, 44 mL/g liquid–solid ratio, and 67 min ultrasonic time. Compared with the traditional extraction process, the sequential methods not only can obtain higher extraction efficiency, but also can realize the selective extraction for two different kinds of constituents with less consumption of traditional organic solvent. In addition, this environmentally friendly method could be used in a large-scale industry.  相似文献   

6.
Supercritical CO2 extraction of flaxseed   总被引:2,自引:0,他引:2  
Extraction of flaxseed oil was performed with supercritical carbon dioxide (SC-CO2). To investigate the effects of pressure and temperature on the solubility of oil and oil yield, three isobaric (21, 35, and 55 MPa) and two isothermal (50 and 70°C) extraction conditions were selected. Although the maximal solubility of flaxseed oil, 11.3 mg oil/g CO2, was obtained at 70°C/55 MPa, the oil yield obtained after 3 h of extraction at this condition was only 25% (g oil/g seed×100), which represented 66% of the total available oil of the flaxseed. Lipid composition and FFA and tocol (tocopherol and tocotrienol) contents of the oils obtained by both SC-CO2 and petroleum ether extraction were determined. The α-linolenic acid content of the SC-CO2-extracted oil was higher than that obtained by solvent extraction.  相似文献   

7.
A flow apparatus was constructed to carry out studies of supercritical fluid extraction in the temperature range 298·15–353·15 K and pressures up to 40 MPa. To test the apparatus, studies on the solubility of naphthalene in CO2 at 308·15, 313·15 and 318·15 K and pressures up to 35 MPa were carried out. These experimental data were correlated through the Peng–Robinson equation of state. Samples of the microalgae Botryococcus braunii and Chlorella vulgaris which produce diolefines C25–C31 and carotenoids, respectively, were submitted to supercritical CO2. The extraction yields for these compounds were studied and compared with those obtained using organic solvents. Supercritical CO2 was also used to produce extracts from rosemary leaves (Rosmarinus officinalis L.), which were compared with those obtained by hexane extraction.  相似文献   

8.
Rape bee pollen lipids obtained by petrol ether extraction (PEE) or supercritical fluid (carbon dioxide) extraction (SFE) were compared with regard to their free fatty acid (FFA) components. Optimal SFE conditions were selected by carrying out the Taguchi method with an OA9 (33) matrix design, and are as follows: extraction pressure at 35 MPa, temperature at 45 °C, and dynamic extraction time at 90 min. The lipid yield based on PEE was 7.42 wt‐% and the extracts of the desired analytes based on SFE varied in the range of 3.23–5.58 wt‐% under different conditions. With the optimized procedure, the lipid yield was 6.09 wt‐%. The FFA in the lipids were separated with a pre‐column derivation method and 1‐[2‐(p‐toluenesulfonate) ethyl]‐2‐phenylimidazole [4,5‐f]9,10‐phenanthrene as labeling regent, followed by high‐pressure liquid chromatography (HPLC) with fluorescence detection. HPLC analysis shows that the lipids contain abundant unsaturated fatty acids (UFA) in high to low concentrations as follows: linolenic acid (18:3), oleic acid (18:1), linoleic acid (18:2), nervonic acid (24:1), and lignoceric acid (20:4). The UFA contents in the SFE extracts were higher than those after PEE. The results indicated that SFE under suitable conditions is more selective than conventional PEE with regard to lipid extraction and preservation of their quality.  相似文献   

9.
Response surface methodology was employed to optimize the conditions of supercritical CO2 extraction of the oil from freeze‐dried onion powder. The effects of pressure, temperature and extraction time on the yield of oil were investigated. The maximum extraction yield of 4.69 ± 0.04 g/kg dry basis was achieved at a pressure of 20.6 MPa, a temperature of 40.6 °C, a time of 260 min, a CO2 flow rate of 22 L h–1, and an entrainer ratio of 0.1 mL absolute ethanol per gram dry basis. The chemical composition of the oil was analyzed by gas chromatography‐mass spectrometry. The most representative compounds of the essential oil were organosulfur‐containing compounds and, among these, the main constituents were methyl 5‐methylfuryl sulfide (18.30 %), methyl 3,4‐dimethyl‐2‐thienyl disulfide (11.75 %) and 1‐propenyl propyl disulfide (9.72 %).  相似文献   

10.
ABSTRACT

In this study, electrolyte materials were synthesized by mixing a highly conducting salt (K2CO3) with the poly(vinyl alcohol) (PVA) in different proportions (from 10 to 50 wt.%). The synthesized electrolyte was characterized using Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) for their functional groups, morphology, thermal stability, glass transition temperature (Tg ), ionic conductivity, and potential window, respectively. Characterization results show that the complex formation between PVA and K2CO3 salt has been established by FTIR spectroscopic study, which indicates the detailed interaction between PVA and the salts in PVA-K2CO3 composites while the amorphous nature of the electrolyte after incorporation of the salts has been confirmed by FESEM analysis. Similarly, TGA and DSC analysis revealed that both decomposition temperature and Tg of the synthesized electrolytes decrease with the addition of K2CO3 due to the strong plasticizing effect of the salt. The results confirm that the electrolytes have sufficient thermal stability for supercapacitor operation, as well as an amorphous phase to effectively deliver high ionic conductivity. The highest ionic conductivity of 4.53 × 10?3 S cm?1 at 373 K and potential window of 2.7 V was exhibited by PK30 (30 wt.% K2CO3), which can be considered as high value for solid-state electrolytes which are superior to those electrolytes from PVA salts earlier reported. The results similarly show that the prepared electrolyte is temperature-dependent as conductivity increase with increase in temperature. Based on these properties, it can be imply that the PVA-K2CO3 gel polymer electrolyte (GPE) could be a promising electrolyte candidate for EDLC applications. The results indicate that the PVA-K2CO3 as a new electrolyte material has great potential in practical applications of portable energy-storage devices.  相似文献   

11.
This work explored the potential of subcritical liquids and supercritical carbon dioxide (CO2) in the recovery of extracts containing phenolic compounds, antioxidants and anthocyanins from residues of blueberry (Vaccinium myrtillus L.) processing. Supercritical CO2 and pressurized liquids are alternatives to the use of toxic organic solvents or extraction methods that apply high temperatures. Blueberry is the fruit with the highest antioxidant and polyphenol content, which is present in both peel and pulp. In the extraction with pressurized liquids (PLE), water, ethanol and acetone were used at different proportions, with temperature, pressure and solvent flow rate kept constant at 40 °C, 20 MPa and 10 ml/min, respectively. The extracts were analyzed and the highest antioxidant activities and phenolic contents were found in the extracts obtained with pure ethanol and ethanol + water. The highest concentrations of anthocyanins were recovered with acidified water as solvent. In supercritical fluid extraction (SFE) with CO2, water, acidified water, and ethanol were used as modifiers, and the best condition for all functional components evaluated was SFE with 90% CO2, 5% water, and 5% ethanol. Sixteen anthocyanins were identified and quantified by ultra performance liquid chromatography (UPLC).  相似文献   

12.
This work investigates the supercritical CO2 extraction of capsidiol from pepper fruit tissues activated with Alternaria alternate (Fr) Keissler suspension culture as a biotic elicitor. Capsidiol production in the fruit tissue was markedly increased by the treatment with a biotic elicitor and reached its maximum level after 4 days of elicitation. The effects of separation parameters such as temperature, pressure, supercritical solvent flow rate, particle diameter and also initial capsidiol concentration were investigated on solubility, initial extraction rate and extraction yield. The optimal extraction conditions were obtained at the temperature of 40 °C, the pressure of 400 bar, the supercritical CO2 flow rate of 2 cm3 min?1, and the average particle diameter of 116 µm. The results showed that the ratio of the supercritical CO2 extraction yield to the organic solvent extraction yield was changed from 84 to 97 wt‐% depending on the initial capsidiol concentration. Copyright © 2004 Society of Chemical Industry  相似文献   

13.
The possibility of using the tamarillo (Solanum betaceum (Cav.) Sendtn (syn. Cyphomandra betacea)) epicarp as source of compounds with antioxidant activity in cooked beef meat (CBM) was explored. Extracts from tamarillo by supercritical fluid extraction (SFE) and Soxhlet extraction (SE) were obtained. The SFE was performed using pure CO2 at different temperatures and pressures (40 and 50 °C; 10, 20 and 30 MPa) and CO2 added with ethanol (CO2/EtOH) as co-solvent (2, 5 and 8%, w/w). The SFE kinetics and mathematical modeling of the overall extraction curves (OEC) were also investigated. EtOH and hexane were used in the SE. The antioxidant activity (AA) of extracts was evaluated in CBM as well as the protection against lipid oxidation was determined by measuring lipid hydroperoxides (LHP) and thiobarbituric acid reactive species (TBARS). The extract obtained by SFE with CO2/EtOH (50 °C/30 MPa and 2% of EtOH) showed the highest AA. In SFE, the co-solvent addition improved considerably the AA and the extraction yield. The extracts obtained by SFE with CO2/EtOH showed a better AA compared with the synthetic antioxidant TBHQ. The highest yield values were achieved by SE with ethanol (7.7 ± 0.4%) and by SFE with 5% EtOH (1.9 ± 0.1%). The results indicate that extracts of tamarillo epicarp are a potential source of antioxidant compounds.  相似文献   

14.
《分离科学与技术》2012,47(16):2320-2330
In this research, continuous SAPO-34 membranes were synthesized via secondary growth method onto both α-Al2O3 and mullite supports at three levels of synthesis temperature: 185, 195, and 220°C for 24 h. The synthesized membranes were characterized using XRD and SEM analysis and single gas permeation experiments. It was found out that support material and synthesis temperature both have significant effects on the membrane performance. At higher synthesis temperature, SAPO-34 crystals grown over the mullite support become more uniform and smaller in size but those grown on the α-Al2O3 support become larger. Effect of synthesis temperature on single gas permeation properties of the synthesized SAPO-34 membranes was also studied. For the mullite supported membranes, the CH4 and CO2 permeances decrease as synthesis temperature increases; but in the case of the alumina supported membranes, by increasing synthesis temperature, CH4 and CO2 permeances first decrease up to 195°C and then increase up to 220°C. Even in equal membrane thicknesses, the mullite supported membrane shows lower gas permenaces. Increasing synthesis temperature decreases CO2/CH4 ideal selectivity for the α-Al2O3 supported membranes, while increases for the mullite supported membranes. Under optimum synthesis conditions, at room temperature and 2 bar feed pressure, the CO2 permeance through the α-Al2O3 and the mullite supported SAPO-34 membranes are 8.2 × 10?7 and 8.5 × 10?8 (mol/m2 · s · Pa), respectively, and CO2/CH4 ideal selectivities are 51 and 61, respectively.  相似文献   

15.
Supercritical CO2 extraction of Plumula nelumbinis oil was investigated at temperatures of 308–338 K and pressures of 15–45 MPa. The yield of the extracted oil was 0.128 g/g material at optimal conditions, in which gamma-sitosterol, unsaturated fatty acids and gamma-tocopherol had higher relative concentrations as determined by GC–MS. The broken and intact cell (BIC) model, with reduced adjustable parameters, was utilized to simulate the SFE process. The values of average absolute relative deviation (AARD) were in the range 2.34–10.9%, indicating that the improved method had a similar effect to the BIC model when three parameters were adjusted. The parameters obtained during the modeling had clear physical meanings and were used to gain an in-depth understanding of the SFE process theoretically.  相似文献   

16.
Virola surinamensis is an abundant floodplain tree, popularly known as ucuúba, that grows in the Amazon. In this study, ucuúba seed oil was obtained by supercritical fluid extraction under different operating conditions, as well as Soxhlet extraction. The operating conditions for supercritical extraction were an extraction temperature of 40, 60, or 80?°C, a pressure of 350?bar, and a CO2 mass flow of 7.9?×?10?5 kg/s. The supercritical extraction curves were fitted to mass transfer models, and the fatty acid profiles of the extracts were determined by gas chromatography. The antimicrobial activity was assessed against Candida albicans, Staphylococcus aureus, and Escherichia coli. The highest yield obtained using supercritical CO2 was 64.39% and the lowest was 59.21%. The phytochemical analysis showed the presence of steroids, terpenes, coumarins, and phenolic compounds. All ucuúba oil samples showed antioxidant activity. Regarding the antimicrobial activity, ucuúba oil only showed activity against S. aureus.  相似文献   

17.
Three common phthalates, namely, dioctyl phthalate, diisodecyl phthalate, and trioctyl trimellitate, were used as plasticizers for poly(vinyl chloride) (PVC) processing, and the extraction of these plasticizers were investigated using supercritical CO2 fluids. Factors affecting the extractions of these phthalates were focused. The molecular weight of phthalates was found to dominate the level of extraction of low temperatures, whereas the content of carbonyl groups in the phthalate was a determining factor for the level of extraction of high temperatures. Negligible extraction was observed below the critical pressure of CO2. For 32°C, the level of the extraction is insignificant below density of ca 0.7 g/cm3, above which the level of the extraction increases roughly linearly with increasing density. For temperatures above 32°C, the density of CO2 for apparent extractions decreased with increasing temperatures. The threshold density of CO2 for extractions was found to be independent of the amount of a given phthalate in PVC. Two extraction rates during the extraction could be determined, with a higher rate in the first hour followed by a lower rate later in the extraction for all three phthalates. The effects of the extractions of phthalates on the flexibility of PVC were also investigated as well as the effects of the extrusion conditions, which could lead to various degrees of plasticization of PVC, on the level of extractions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 4032–4037, 2003  相似文献   

18.
The objective of the work was to optimize the extraction of Persea indica L. bioactive compounds by means of supercritical fluid extraction (SFE) and analyze their insecticidal effects. P. indica L. is one of the dominant species of the Canarian laurel forest, a relict of the Tertiary flora. Different extraction conditions (pressure, plant material particle size, temperature, CO2 flow) and the influence of entrainer were tested and the evolution of the extracted compounds was screened by HPLC-MS. A comparison with conventional techniques such as hydrodistillation (HD) or organic solvent extraction (OSE) was also presented. Particularly, four CO2 densities ranging from 628.61 kg/m3 to 839.81 kg/m3 were studied in the range of 10.0-20.0 MPa and 40-50 °C. The extracts contained insecticidal ryanodanes of great interest, previously described as insecticidal components of P. indica. The insecticidal antifeedant activity of selected extracts was inspected. A model based on mass transfer equations, the Sovová model, was successfully applied to correlate the experimental data.  相似文献   

19.
A series of solid amine adsorbents were prepared by the template method with ion-exchange resin (D001) as the carrier and polyethyleneimine (PEI) as the modifier. The absorbents were characterized by energy disperse spectroscopy (EDS), scanning electron microscope (SEM), N2 adsorption–desorption, Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) techniques. The effects of PEI loading, adsorption temperature and influent velocities on CO2 adsorption capacity in a fixed-bed reactor were investigated. The results show that the solid amine adsorbent prepared by the template method had a better PEI dispersion, stability and CO2 adsorption capacity. The maximum CO2 adsorption capacity was 3.98 mmol·g?1 when PEI loading was 30%, the adsorption temperature was 65°C and the influent velocity was 40 mL·min?1. The CO2 adsorption capacity decreased only by 9.50% after 10 cycles of adsorption–desorption tests. The study of kinetics indicates that both chemical adsorption and physical adsorption occurred in the CO2 adsorption process. The CO2 adsorption process included fast breakthrough adsorption and gradually approaching equilibrium stage. The particle internal diffusion process was the control step for CO2 adsorption.  相似文献   

20.
Nimbin, a component found in neem seeds, which is reported to have several valuable medicinal properties including: anti-inflammatory, anti-pyretic, anti-fugal, antihistamine and antiseptic was extracted from neem seeds using supercritical CO2 and CO2 with a methanol modifier.Nimbin extraction yields using supercritical carbon dioxide were found to be approximately 85% at 308 K, 23 MPa and a CO2 flow rate of 0.62 cm3/min for a 2-g sample of neem. An optimum extraction pressure appears to exist at ≈23 MPa and 328 K. Although extraction using a methanol modifier did improve the extraction somewhat, methanol was not found to be an effective modifier for extracting nimbin.Dynamic extraction curves were predicted using three empirical models and a theoretical model. The three empirical models were: a Langmuir gas adsorption model, a first order plus dead time (FOPDT) model and a so-called tn cyclone model used to incorporate sigmoidal curves. The parameters in the empirical models were fitted to the experimental data. The Goto et al. [J. Chem. Eng. Jpn. 31 (1998) 171] theoretical model was compared to the experimental results and was found to fit the data well. The theoretical model shows that the extraction yield depends strongly on the solvent flow rate, that is, external mass transfer or equilibrium is the controlling step of this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号