首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The focus of this paper is to investigate different control structures (single-loop PI control) for a dividing wall (Petlyuk) column for separating ethanol, n-propanol and n-butanol. Four control structures are studied. All the results are simulations based on Aspen Plus. Control structure 1 (CS1) is stabilizing control structure with only temperature controllers. CS2, CS3 and CS4, containing also composition controllers, are introduced to reduce the steady state composition deviations. CS2 adds a distillate composition controller (CCDB) on top of CS1. CS3 is much more complicated with three temperature-composition cascade controllers and in addition a selector to the reboiler duty to control the maximum controller output of light impurity composition control in side stream and bottom impurity control in the prefractionator. CS4 adds another high selector to control the light impurity in the sidestream. Surprisingly, when considering the dynamic and even steady state performance of the proposed control structures, CS1 proves to be the best control structure to handle feed disturbances inserted into the three-product Petlyuk column.  相似文献   

2.
基于变压精馏分离乙酸乙酯/正己烷共沸体系两塔的温差,利用Aspen Plus软件,以年度总成本最小为目标函数,对部分及完全热集成变压精馏工艺进行了稳态模拟及优化。在此基础上,利用Aspen Dynamics软件开发了多种控制结构,通过引入不同进料流量及组成的扰动测试控制结构的有效性。结果表明,完全热集成变压精馏工艺比部分热集成变压精馏工艺的经济性稍好。动态响应结果表明,部分热集成变压精馏工艺的压力?补偿温度控制结构可有效处理不同程度的干扰,能有效提高控制结构对干扰的响应速度,缩短达到新稳态的时间,保证乙酸乙酯和正己烷产品纯度在99.9wt%之上;而完全热集成变压精馏工艺的组分?温度串级控制结构仅能处理较小的组分和流量干扰,实现稳健控制,无法处理较大的干扰。综合比较两种工艺的经济性和可控性,认为部分热集成变压精馏工艺分离乙酸乙酯/正己烷共沸体系优于完全热集成变压精馏工艺。  相似文献   

3.
将常规萃取精馏、差压热耦合萃取精馏以及隔壁塔萃取精馏技术应用于以糠醛为萃取剂的苯和环己烷共沸物分离过程。在稳态模型的基础上,利用Aspen Dynamics软件进行控制研究,对三工艺流程提出了若干控制策略。结果表明,对于常规萃取精馏过程,再沸器热负荷与进料量比值控制结构在降低控制过程超调量方面表现出明显优势;对于差压热耦合萃取精馏过程,带有压力-补偿控温策略的方案控制效果更佳;而对于隔壁塔,则选择了无隔板下方气液分离比控制的结构来作为较优的控制策略。  相似文献   

4.
The best control structures for the energy optimizing control of propane precooled mixed refrigerant (C3MR) processes were examined. A first principles‐based rigorous dynamic model was developed to analyze the steady‐state and dynamic behaviors of the C3MR process. The steady‐state optimality of the C3MR process was then examined in a whole operation space for exploring the feasibility of the energy optimizing control for possible control structures. As a result, the temperature difference (TD) between the warm‐end inlet and outlet MR streams was exploited as a promising controlled variable to automatically keep the liquefaction process close to its optimum. The closed‐loop responses were finally evaluated for every possible control structure candidate. Based on the steady‐state optimality and the dynamic performance evaluation, several control structures with a TD loop were proposed to be most favorable for the energy optimizing control of the C3MR process. The proposed optimality approach can be applied to any natural gas liquefaction process for determining a proper controlled variable for optimizing operation. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2428–2441, 2014  相似文献   

5.
The azeotrope of methyl acetate methanol and water was isolated using extractive distillation with water as entrainer. The pressure-swing extractive distillation (PSED) process and vapor side-stream distillation column (VSDC) with the rectifier process were designed to separate the methyl acetate, methanol and water mixture. It was revealed that the VSDC with the rectifier process had a reduction in energy consumption than the PSED process. Four control schemes of the two process were investigated: Double temperature control scheme (CS1), QR/F feedforward control of reboiler duty scheme for PESD (CS2), QR/F feedback control scheme for VSDC (CS3), the feedback control scheme of sensitive plate temperature of side-drawing distillation column to dominate the compressor shaft speed (CS4). Feed flow and composition disturbance were used to evaluate the dynamic performance. As a result, CS4 is a preferable choice for separation of methyl acetate-methanol-water mixture. A control scheme combining the operating parameters of dynamic equipment with the control indicators of static equipment was proposed in this paper. It means using the sensitive plate temperature of side-drawing column to control the compressor shaft speed. This is a new control scheme for extractive distillation.  相似文献   

6.
The distillation column with side reactors (SRC) can overcome the temperature/pressure mismatch in the traditional reactive distillation, the column operates at temperature/pressure favorable for vapor-liquid separation, while the reactors operate at temperatures/pressures favorable for reaction kinetics. According to the smooth operation and automatic control problem of the distillation column with side reactors (SRC), the design, simulation calculation and dynamic control of the SCR process for chlorobenzene production are discussed in the paper. Firstly, the mechanism models, the integrated structure optimal design and process simulation systems are established, respectively. And then multivariable control schemes are designed, the controllability of SRC process based on the optimal steady-state integrated structure is explored. The dynamic response performances of closed-loop system against several disturbances are discussed to verify the effectiveness of control schemes for the SRC process. The simulating results show that the control structure using conventional control strategies can effectively overcome feeding disturbances in a specific range.  相似文献   

7.
Systematic plantwide control system design for economically optimal operation of the ethyl benzene process over a large throughput range is studied. As throughput is increased, constraints progressively become active with the highest number of active constraints at maximum throughput. An economic plantwide control system (CS1) is designed for operation at this most constrained operating point using a novel “top‐down” pairing approach with higher prioritization to the economic objectives over regulatory objectives. This structure is adapted for near optimal low throughput operation with constraints that go inactive taking up additional economic variable control. For comparison, a conventional plantwide control structure (CS2) with the throughput manipulator at a fresh feed and “bottom‐up” pairing for the control objectives is also synthesized. Four overrides are needed in CS2 to handle the hard equipment capacity constraints at maximum throughput. Rigorous dynamic simulations show that CS1 is dynamically and economically significantly superior to CS2. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1996–2014, 2013  相似文献   

8.
反应精馏隔壁塔生产乙酸正丁酯的优化与控制   总被引:4,自引:3,他引:1       下载免费PDF全文
陈梦琪  于娜  刘育良  李鲁闽  孙兰义 《化工学报》2016,67(12):5066-5081
对反应精馏隔壁塔生产乙酸正丁酯过程进行了模拟、优化与控制的系统研究。利用Aspen Plus软件模拟乙酸甲酯与正丁醇的酯交换反应过程,以年总费用(TAC)为目标函数进行过程优化,通过稳态敏感性分析及相对增益矩阵(RGA)判据得到不同的操纵变量与控制变量匹配关系,以此为基础,在Aspen Dynamics平台建立了若干控制结构并进行分析对比。结果表明,利用两股反应物呈比例进料可较为有效地抵抗进料扰动,最后提出的无再沸器热负荷与混合物进料量比值(Qr/F)控制的改进控制结构CS3,在降低反应精馏隔壁塔控制过程超调量方面有较大的优越性。  相似文献   

9.
Cavity pressure has been recognized as a critical process parameter for the injection molding of high quality thermoplastic parts. This Interest has led to the achievement of closed loop cavity pressure control, but only at one point in the mold cavity. A system has been recently described that extends this capability to provide simultaneous control of cavity pressure at multiple locations in the mold through the addition of dynamic valves in the melt delivery system, each of which can be independently controlled to meter flow and pressure to its portion of the mold. This paper describes the ability of the multi-cavity pressure control system to improve process capability and molded part quality. Experimental investigation has shown that the technology enables significant process flexibility to arbitrarily balance flow, move knit-lines, and control multiple part dimensions. In the presence of typical production process disturbances, moreover, closed loop multi-cavity pressure control was shown to increase the process capability index, Cp, from 0.52 for the conventional injection molding process to 1.5. After these capabilities have been discussed, several limitations of the process are described that lead to promising areas of future research.  相似文献   

10.
Reactive distillation (RD) for the synthesis of n-propyl propionate (ProPro) is operated with an excess of the reactant n-propyl alcohol (ProOH). It is simulated as a two-column system which can be easily controlled compared with a single reactive column which is operated neat, because the recovery column acts conceptually as a composition analyzer. The optimal steady-state design of the two-column system with the minimal total annual cost (TAC) is screened first. Then, an effective control scheme is established to handle feed disturbances. Only tray temperatures are required in the dynamic control two-column process. The product purity is held close to the set value 99.5 mol% and large deviation is prevented.  相似文献   

11.
Dividing wall column configurations have a large savings potential in terms of capital and energy. This paper uses dynamic simulation to investigate three alternative control structures for one of these configurations, namely the Kaibel column. Four components, here selected as methanol, ethanol, n-propanol and n-butanol, are separated into pure products within a single column shell. Control structure 1 (CS1) uses only temperature controllers and is therefore particularly interesting from an industrial point of view. Since the control objective is to control the four product compositions, the two other control structures use also composition controllers. Surprisingly, for composition control, the simple temperature control scheme (CS1) is almost as good at steady-state and much better from a dynamic point of view than the two other more complex control structures.  相似文献   

12.
Conventional free sintering of low-temperature co-firing ceramic (LTCC) technology has several merits such as sintering temperature below 1000°C that enables co-firing with electrode materials of silver or copper metal and multilayer structure formation. But due to the free sintering process, large shrinkage occurs. To fabricate electronic devices and components with near zero shrinkage within x, y directions constrained sintering (CS) technology is required. In this study a constrained sintering paste (CSP) utilizing alumina powder, which has a higher sintering temperature than LTCC powders, was fabricated for CS technology. The effect of CSP formulated using alumina powder on shrinkage was studied according to variation in paste composition. As a result ceramic package structure with a cavity was fabricated with shrinkage control of 0.028%, which is far smaller than the current CS technology shrinkage of approximately 0.1%.  相似文献   

13.
基于甲醇和苯共沸体系的压敏性,利用Aspen Plus和Aspen Dynamics软件对变压精馏分离该体系的稳态工艺进行了模拟和优化,研究了该工艺的动态特性,提出了控制产品纯度的3种控制结构:基础控制结构、比例控制结构和双比例与温度?组分联合控制结构,通过对控制结构添加±20%的组分和流量干扰测试控制结构的稳定性. 结果表明,基础控制结构基本能实现稳健控制,但不能解决组分干扰引起的产品纯度偏差过大等问题;比例控制结构可实现相对稳健的控制,但改进效果不显著;双比例与温度?组分联合控制结构在受到20%进料和组分干扰后,产品纯度能较快恢复至设定值的99.90%,实现稳健控制.  相似文献   

14.
通过对动态矩阵控制(DMC)算法和传统PID控制的分析,提出一个基于DMC-PID串级控制的催化剂温控系统。仿真结果表明:DMC-PID控制效果优于PID-PID控制;电流副回路采用PID控制,能够快速有效调节电流进而控制燃烧炉内温度;温度主回路采用DMC控制,克服了传统温控系统存在的超调量大、时延及滞后性等问题,避免了多种不可测扰动的影响。  相似文献   

15.
A new methodology that includes process synthesis and control structure decisions for the optimal process and control design of dynamic systems under uncertainty is presented. The method integrates dynamic flexibility and dynamic feasibility in a single optimization formulation, thus, reducing the costs to assess the optimal design. A robust stability test is also included in the proposed method to ensure that the optimal design is stable in the presence of magnitude‐bounded perturbations. Since disturbances are treated as stochastic time‐discrete unmeasured inputs, the optimal process synthesis and control design specified by this method remains feasible and stable in the presence of the most critical realizations in the disturbances. The proposed methodology has been applied to simultaneously design and control a system of CSTRs and a ternary distillation column. A study on the computational costs associated with this method is presented and compared to that required by a dynamic optimization‐based scheme. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2497–2514, 2013  相似文献   

16.
The design of an effective plant‐wide control strategy is a key challenge for the development of future continuous pharmaceutical processes. This article presents a case study for the design of a plant‐wide control structure for a system inspired by an end‐to‐end continuous pharmaceutical pilot plant. A hierarchical decomposition strategy is used to classify control objectives. A plant‐wide dynamic model of the process is used to generate parametric sensitivities, which provide a basis for the synthesis of control loops. Simulations for selected disturbances illustrate that the critical quality attributes (CQAs) of the final product can be kept close to specification in the presence of significant and persistent disturbances. Furthermore, it is illustrated how selected CQAs of the final product can be brought simultaneously to a new setpoint while maintaining the remaining CQAs at a constant value during this transition. The latter result shows flexibility to control CQAs independently of each other. © 2013 American Institute of Chemical Engineers AIChE J, 59: 3671–3685, 2013  相似文献   

17.
A solution layer crystallization process in a concentric annulus is presented that removes the need for filtration. A dynamic model for layer crystallization with and without a recirculation loop is developed in the form of coupled partial differential equations describing the effects of mass transfer, heat transfer, and crystallization kinetics. The model predicts the variation of the temperature, concentration, and dynamic crystal thickness along the pipe length, and the concentration and temperature along the pipe radius. The model predictions are shown to closely track experimental data that were not used in the model's construction, and also compared to an analytical solution that can be used for quickly obtaining rough estimates when there is no recirculation loop. The model can be used to optimize product yield and crystal layer thickness uniformity, with constraints on the supersaturation to avoid bulk nucleation by adjusting cooling temperatures in the core and jacket. © 2013 American Institute of Chemical Engineers AIChE J, 59: 1308–1321, 2013  相似文献   

18.
Feedback linearization techniques are used to deal with the nonlinear controller designs which have attracted many researchers' attention in recent years. The approach has been applied successfully to solve a number of practical nonlinear control problems, but typically requires on-line full state measurement which is usually not the case in real chemical process industries. In this paper, we address the problem of synthesizing nonlinear state feedback controllers for time-delay nonlinear systems which are perturbed by disturbances. On-line estimation of the unmeasurable disturbances and unavailable state variables is introduced to facilitate the implementation of coordinate transformations and state feedback and prediction. Two kinds of dynamic compensators are then proposed to handle the process deadtime. Finally numerical simulations in a CSTR example demonstrate the promising performance of the overall nonlinear control structure in disturbance rejection.  相似文献   

19.
20.
Dynamic controls of pressure-swing distillation with an intermediate connection(PSDIC) process of ethyl acetate and ethanol separation were investigated.The double temperature/composition cascade control structure can perfectly implement effective control when ±20% feed disturbances were introduced.This control structure did not require the control of the flowrate of the side stream.The dynamic controllability of PSDIC with partial heat integration(PHIPSDIC) was also explored.The improved control structure can effectively control ±20% feed disturbances.However,in industrial production,simple controller,sensitive and easy to operate,is the optimal target.To avoid the use of component controllers or complex control structure,the original product purities could be maintained using the basic control structure for the PSDIC process if the product purities in steady state were properly increased,albeit by incurring a slight rise in the total annual cost(TAC).This alternative method without a composition controller combined with the energy-saving PSDIC process provides a simple and effective control scheme in industrial production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号