首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(dimethyl benzimidazolium) iodides were synthesized from polybenzimidazole derivatives by permethylation. They were easily changed to OH?, CO3 2? and HCO3 ? ion conducting electrolytes by immersing in 1 M of KOH, K2CO3 and KHCO3. Properties of polymers were changed by the ion exchange process. The anion conducting membranes showed tough and flexible properties. The water uptake, ion exchange capacity and conductivity varied depending on the counter anions. One of the poly(dimethyl benzimidazolium) carbonate membranes, Me-DAB-OBBA-carbonate showed the highest water uptake (59 %) as well as ion conductivity (33.74 mS/cm at 80 °C), and could be a good candidate for an anion exchange membrane for anion exchange membrane fuel cells.  相似文献   

2.
Uranyl ion adsorption from aqueous solutions has been investigated by chemically crosslinked (C) polyelectrolyte acrylamide/2-acrylamido-2-methyl-1-propanesulfonic acid (CAAMPS) hydrogels. CAAMPS hydrogels with various compositions were prepared from ternary mixtures of acrylamide (A), 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS), and water by free radical polymerization in an aqueous solution using multifunctional crosslinkers such as ethylene glycol dimethacrylate (EGDMA) and 1,4 butanediol dimethacrylate (BDMA). The swelling equilibrium of polyelectrolyte copolymer gels containing of CAAMPS hydrogels has been studied as a function of copolymer composition. Swelling experiments were performed in water at 25°C, gravimetrically. The influence of AMPS content in hydrogels was examined. The weight-swelling ratio of CAAMPS hydrogels was increased up to 127.03 (for 300 mg AMPS and crosslinked by EGDMA) and 93.32 (for 300 mg AMPS and crosslinked by BDMA), while acrylamide hydrogels swelled up to 10.27 (crosslinked by EGDMA) and 10.06 (crosslinked by BDMA). Uranyl ion adsorption from aqueous solutions was studied by batch sorption technique at 25°C. The effect of uranyl ion concentration and mass of AMPS on the uranyl ion adsorption were examined. In the experiments of the sorption, L type sorption in the Giles classification system was found. Finally, the amount of sorbed uranyl ion per gram of dry hydrogel (q) was calculated to be 0.67 × 10?3–2.11 × 10?3 mol uranyl ion per gram for CAAMPS hydrogels. Removal effiency of uranyl ions (RE%) was changed range 9.05–29.92%. The values of partition ratio, (K d ) of uranyl ions was calculated to be 0.10–0.43 for CAAMPS hydrogels.  相似文献   

3.
ABSTRACT

The kinetics of ion exchange of Zr/Sn(IV) phosphonate–phosphate hybrid ion exchange materials have been studied with several types of ions of specific interest to nuclear fuel recycling including Nd3+ at 4.5 and 43 mM and NpO2+ at 2.9 mM spanning multiple HNO3 concentrations. In most cases, the equilibrium was reached in less than 12 h. The ion exchange behavior followed that of pseudo first-order adsorption with rates ranging from 0.430–4.10 h?1 to 0.290–0.435 h?1 for Nd3+ and NpO2+, respectively. A separation with both Nd3+ and NpO2+ present was performed, resulting in separation factors of 1.9–12, 1.7–6.6, and 2.0–5.7 at 1 × 10?1, 1 × 10?2, and 1 × 10?3 M HNO3, respectively.  相似文献   

4.
Uranyl ion adsorption from aqueous solutions has been investigated by chemically cross-linked polyelectrolyte acrylamide/maleic acid (CAMA) hydrogels. CAMA hydrogels with various compositions were prepared from ternary mixtures of acrylamide (A), maleic acid (MA), and water by free radical polymerization in aqueous solution using multifunctional cross-linkers such as ethylene glycol dimethacrylate (EGDMA) and 1,4-butanediol dimethacrylate (BDMA). Uranyl ion adsorption from aqueous solutions was studied by batch sorption technique at 25°C. The effect of uranyl ion concentration and mass of adsorbent on the uranyl ion adsorption were examined. In the experiments of the sorption, L type sorption in the Giles classification system was found. Some binding parameters such as initial binding constant (K i ), equilibrium constant (K), monolayer coverage (n), site-size (u), and maximum fractional occupancy (Ô) for CAMA hydrogel-uranyl ion binding system were calculated by using Langmuir linearization method. Finally, the amount of sorbed uranyl ion per gram of dry hydrogel (q) was calculated to be 3.29 × 10?4 ? 15.87 × 10?4 mol uranyl ion per gram for CAMA hydrogels. Adsorption of uranyl ion was changed range 8.17–48.10%.  相似文献   

5.
Copolymerization of methylmethacrylate (MMA) with 1-vinyl-2-pyrrolidone (N-VP), initiated by p-nitrobenzyl triphenyl phosphonium ylide in dioxane at 60°C for 60 min under inert atmosphere of nitrogen yields alternating copolymer as evidenced by the values of r 1 = 0.01 and r 2 = 0.02. The kinetic expression was Rp ∝ [I]0.75[MMA]1.2[VP]1.2. The overall activation energy is 45.4 kJ/mol. The FTIR bands of OCH3 of MMA at 1725 cm?1 and –C=O of N-VP at 1679 cm?1, confirms the incorporation of both the monomers in the copolymer. The glass transition temperature of the copolymer is 133°C. The GPC data shows the polydispersity index at about 1.5. The ESR spectroscopy confirm phenyl radical responsible for initiation.  相似文献   

6.
The influence of pulsed electric field (PEF) and subsequent centrifugal osmotic dehydration (OD) on the convective drying behavior of carrot is investigated. The PEF was carried out at an intensity of E = 0.60 kV/cm and a treatment duration of t PEF  = 50 ms. The following centrifugal OD was performed in a sucrose solution of 65% (w/w) at 40°C for 0, 1, 2, or 4 h under 2400 × g. The drying was performed after the centrifugal OD for temperatures 40–60°C and at constant air rate (6 m3/h).

With the increase of OD duration the air drying time is reduced spectacularly. The dimensionless moisture ratio Xr = 0.1 is reached for PEF-untreated carrots after 370 min of air drying at 60°C in absence of centrifugal OD against 90 min of air drying after the 240 min of centrifugal OD. The PEF treatment reduces additionally the air drying time. The total time of dehydration operations can be shortened when OD time is optimized. For instance, the minimal time required to dehydrate untreated carrots until Xr = 0.1 is 260 min (120 min of OD at 40°C and 140 min of drying at 60°C). It is reduced to 230 min with PEF-treated carrots.

The moisture effective diffusivity D eff is calculated for the convective air drying based on Fick's law. The centrifugal OD pretreatment increases drastically the value of D eff . For instance, 4 h of centrifugal OD permitted increasing the value of D eff from 0.93 · 10?9 to 3.85 · 10?9 m2/s for untreated carrots and from 1.17 · 10?9 to 5.10 · 10?9 m2/s for PEF-treated carrots.  相似文献   

7.
This article provides evidence that jatropha seed coat residues can be used as a carbon source for preparing activated carbons that have good adsorption properties for iodine and methylene blue. Activated carbons were prepared using three different methods of activation, physical, chemical, and physico-chemical, for a range of activation temperatures (600°, 700°, 800°, and 900°C) and activation hold times (1, 2, and 3 h). The highest BET surface area (1479 m2 g?1) and the highest iodine adsorption (1511 mg g?1) were obtained with physico-chemical activation at a temperature of 900°C and a hold time of 2 h. This activated carbon gave higher BET surface area and iodine adsorption than commercial activated carbon (1169.1 m2 g?1 and 1076 mg g?1). The activated carbons prepared by physico-chemical activation at 900°C and 2 h were then tested for adsorption of methylene blue at a range of concentrations of methylene blue (100, 200, 300, 400, and 500 mg L?1). It was found that a Langmuir isotherm gave a better fit (R 2 = 0.999) to the observed adsorptions than a Freundlich isotherm (R 2 = 0.884). For the adsorption kinetics, a pseudo-second-order model gave a better fit (R 2 > 0.998, Δq e  = 3.7%) than a pseudo-first-order model (R 2 ≈ 0.95, Δq e  = 85.6%). These results suggest that chemisorption is the rate-controlling step for the adsorption of methylene blue. The experimental results show that jatropha seed coat is a lignocellulosic waste precursor for preparation of activated carbon that is an alternative source for preparation of commercial-grade activated carbons.  相似文献   

8.
The influence of non-isothermal melt crystallization on thermal behavior and isothermal melt crystallization kinetics of poly-L-lactide (PLLA) were investigated by differential scanning calorimetry (DSC), polarizing micrograph (POM) and x-ray diffraction (XRD). Crystallization performed at lower cooling rates (2°C·min?1) is accompanied by a variation of the kinetics around 118°C. The glass transition temperature of PLLA decreases with increase of cooling rate, and the crystallinity at the end of crystallization increases with decreasing cooling rate. The size of PLLA spherulites increases with a decrease in the cooling rate, and PLLA becomes almost amorphous cooled at rapid rate (>10°C·min?1). PLLA exhibits an Avrami crystallization exponent n = 3.01±0.13 in isothermal crystallization in the range from 90°C to 140°C. According to Hoffman-Lauritzen theory, two crystallization regime are identified with a transition temperature occurring at 118°C, and the value of Kg(II)/Kg(III) is 2.17 [Kg(II) = 6.025 × 105K2, Kg(III) = 1.307 × 106 K2].  相似文献   

9.
Fe2-xYxW3O12 powder has been synthesized by the citrate sol-gel process. A model was proposed to calculate the concentration of species in a citric solution. The calculated results could provide valuable information for determining the optimal molar ratio of cation to citric acid and pH value of solution for Fe2-xYxW3O12 preparation. The predicted parameters derived from this model are in good agreement with the experimental results. The prepared gel and the Fe2-xYxW3O12 powder were characterized by X-ray diffraction (XRD) and differential thermal analysis-thermogravimetry (DTA-TG). The results show that it is very difficult to obtain pure Fe2W3O12 powder by the citrate sol-gel process in the temperature range 500°–1000°C, however, Y2W3O12 can easily be prepared even at 500°C. Y2W3O12 annealed at 1000°C for 10 h is favorable for absorbing moisture in air to form Y2W3O12·3.3H2O. The thermal expansion coefficients of Y2W3O12·3.3H2O are: αa = ? 8.01 × 10?6°C?1, αb = ? 2.51 × 10?7°C?1, and αc = ? 5.55 × 10?6°C?1 in 473–1173 K.  相似文献   

10.
Dry prickly palm cactus (Nopalea cochenillifera) husk was investigated as a substrate for Rhizopus sp. cultivation in the solid state, aiming at the production of laccase (Lac), lignin peroxidase (LiP), and manganese peroxidase (MnP). The optimization of fermentation was evaluated by an experimental design and it was obtained, for each enzyme, maximum productivities (U g?1 h?1) of: 0.085 ± 0.02 (MnP), 0.066 ± 0.001 (LiP), and 0.023 ± 2.3.10?4 (Lac), at the conditions of 10 g of substrate, 72 h of fermentation, aw = 0.865, and 30°C. The enzymes thermal and pH stabilities were evaluated and it was observed better results at temperatures no higher than 60°C and pH of 5.0; in addition, the storage of these enzymes was better at ? 25°C than at 4°C. Since the prickly palm cactus is an agricultural substrate and specially because of its low cost, it is important to propose different applications for it as, for example, an alternative substrate for biotechnological processes.  相似文献   

11.
In the present study, ion conductivity, optical properties, and glass transition temperatures are characterized for polymer electrolytes composed of poly(ethyleneimine) (PEI), lithium bis(trifluoromethane)sulfonylimide (LiTFSI) salt, propylene carbonate (PC), and ethylene carbonate (EC). It was doped with nanoceramic particles in different ratio (0–15 wt.%) to see the effect of ceramic particles. The salt concentration was fixed as 1.04 mol.kg?1. Although valuable improvement in ion conductivity could not be achieved due to nano-Al2O3 fillers, ion conductivity results are placed between 10?2 and 10?4 S/cm. Differential scanning calorimetry (DSC) measurements and optical measurements of all electrolytes were performed between ?80 and 140 °C, in the wavelength range between 400 and 700 nm for sample with 80 μm thickness, respectively. The results showed that transmittance of electrolytes decreased monotonically for increasing Al2O3 contents. In particular, its transmittance value at 550 nm where human sight is at its greatest sensitivity went from 100% without nanoparticles to 50% for 15 wt% of Al2O3.  相似文献   

12.
Kaolinite was intercalated with N-methylformamide (NMF) and dimethylsulphoxide (DMSO), separately. The intercalation of these species expanded the basal space of kaolinite from 0.72 to 1.08 and 1.13 nm, respectively as shown by the X-ray diffraction (XRD). Emulsion polymerization of vinylacetate (VAc) was carried out at different temperatures (60–80°C) using acetone sodium bisulfite as initiator in the absence and presence of untreated as well as the modified forrms of kaolinite (K-NMF, K-DMSO). The results revealed that the presence of kaolinite decreased the rate of polymerization (Rp) by factor of 4 at 60 and 70°C and 7 at 80°C and also the activation energy of polymerization (E a ) was decreased from 43.35 × 104 to 10.32 × 104 J mole?1 if compared with the polymerization of VAc in absence of kaolinite. Using the modified forms of kaolinite (K-NMF, K-DMSO) enhanced the Rp and reduced effectively the E a to ? 27.92 and ? 55.78, respectively. Conversely to untreated kaolinite, the Rp was declining with increasing the temperature in these cases. In all cases, Rp was the highest in the absence of any kaolinite form but in the same time the E a was also the highest. These results were discussed and explained on the basis of the catalytic activity of the different forms, radical scavenging nature of the kaolinite, and chain transfer.  相似文献   

13.
M. Zielinska 《Drying Technology》2016,34(10):1147-1161
The objective of this study was to dry–wet distillers grains and centrifuged solubles and to examine the effect of two different drying media, superheated steam and hot air, at different drying temperatures (110, 130, and 160°C), moisture contents (5–30% wb), and percentages of solubles’ presence (0 or 100%) on some thermophysical properties of laboratory-prepared corn/wheat dried distillers co-products, including geometric mean diameter (dg), particle density (ρp), bulk density (ρb), bulk porosity (?b), specific heat (C), effective thermal diffusivity (αeff), and bulk thermal conductivity (λb). The values of dg of corn/wheat dried distillers co-products ranged from 0.358 ± 0.001 to 0.449 ± 0.001 mm. Experimental values of ρp, ρb, and ?b varied from 1171 ± 6 to 1269 ± 3 kg m?3, from 359 ± 7 to 605 ± 5 kg m?3, and from 0.54 ± 0.01 to 0.71 ± 0.01 kg m?3, respectively. The values of αeff were between 0.58 × 10?7 and 0.93 × 10?7 m2 s?1. The calculated values of C ranged from 1887 ± 11 to 2599 ± 19 J kg?1 K?1, and the values of λb of corn/wheat dried distillers co-products ranged from 0.06 ± 0.01 to 0.09 ± 0.01 W m?1 K?1. Multiple linear regression prediction models were developed to predict the changes in dg, ρp, ρb, ?b, C, αeff, and λb of laboratory-prepared corn/wheat dried distillers co-products with different operational factors.  相似文献   

14.
Li3/8Sr7/16-3x/2LaxZr1/4Nb3/4O3 (x = 0, 0.05, 0.10, 0.15, 0.20) were synthesized using the conventional solid-state reaction method. In order to increase the vacancy concentration, La3+ was doped on the Sr2+ site. Crystal structures of doped samples were characterized by X-ray diffraction. Except, perovskite-type Li3/8Sr7/16-3x/2LaxZr1/4Nb3/4O3 (x = 0, 0.05, 0.10, 0.15) samples were fabricated by heat treatment at 1250 °C, 1275 °C, 1275 °C and 1275 °C, respectively, for 15 h. Lattice sizes decreased with the increase of doping amounts because of the smaller ion radius of La3+ compared to that of Sr2+. Ionic conductivities of the samples were measured by AC impedance spectroscopy. The results showed that the ionic conductivity increases at first and then decreases with raising doping amounts and sintering temperatures. So the optimized composition Li3/8Sr7/16-3x/2LaxZr1/4Nb3/4O3 (x = 0.05) sintered at 1275 °C was selected with the highest total conductivity of 3.33 × 10?5 S cm?1at 30 °C and an activation energy of 0.27 eV. Additionally, potentiostatic polarization test was used to evaluate the electronic conductivity. The optimal composition Li3/8Sr7/16-3x/2LaxZr1/4Nb3/4O3 (x = 0.05) as a possible Li-ion conducting solid electrolyte has an electronic conductivity of only 8.39 × 10?9 S cm?1.  相似文献   

15.
MgAl2O4 (spinel) was utilized as a packing powder in the sintering of hydroxyapatite (HAp) and the composite of HAp/3 mol% Y2O3‐stabilized tetragonal zirconia (3Y‐TZP). The influence of spinel on phase stability of HAp was investigated using X‐ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, and electron probe microanalysis (EPMA) to reveal the reaction in the vicinity of the interface between HAp and spinel. When covered with spinel powder, decomposition temperatures for both HAp monolith and HAp in the composite were raised from 1360°C to 1470°C and from 930°C to 1280°C, respectively. SEM images supported the role of spinel on retardation of the decomposition, showing a dense cross section of the monolith after sintering for 2 h at 1400°C with the spinel as opposed to a porous feature without the covering. XRD results indicated that the increase in the decomposition temperatures was accompanied by a decrease in the a‐axis dimension of the hexagonal structure of HAp, probably as a result of the substitution of F? for OH?. EPMA revealed that negligible reaction occurred between HAp and spinel even at 1500°C, but the Ca2+ in HAp diffused about 20 μm into 3Y‐TZP to form a cubic zirconia solid solution at 1275°C, resulting in the decomposition. The involvement of F? ion in the contraction of a‐axis parameter and the consequent phase stability were manifested by an increase in the Raman band of the symmetric stretching of the P–O bonds at 962.3 cm?1 and the appearance of a band for fluoroapatite at 3538 cm?1.  相似文献   

16.
Nanocomposites electrolytes consisting of La3+ and Zr4+ doped with ceria labelled as La0.2 Ce0.8 O2-δ (LDC), Zr0.2Ce0.8O2-δ (ZDC) and Zr0.2La0.2Ce0.6O2-δ (ZLDC) have been synthesized via a co-precipitation route. DC conductivity was studied with a four-probe method in the range of temperature 450–650 °C and maximum conductivity was found to be 0.81 × 10?2 S.cm?1 (LDC) > 0.32 × 10?2 S.cm?1 (ZLDC) > 0.15 × 10?2 S.cm?1 (ZDC) at a temperature of 650 °C, respectively. Further, electric behavior of doped and co-doped ceria electrolytes was investigated by A.C electrochemical impedance spectroscopy (frequency range ~ 0.1 Hz?4 MHz). The phase/structural identification of the material prepared was studied using X-ray diffraction and found ceria to possess a cubic fluorite structure. Scanning electron microscopy (SEM) was carried out to study its morphology and particle size (~ 90–120 nm). Thermal behavior on its change in weight and length with the temperature were studied by thermogravimetric analysis (TGA) and dilatometry respectively. Furthermore, thermal expansion coefficients (TECs) of prepared electrolytes are calculated and found as follows: 13.4 × 10?6 °C?1, 13.6 × 10?6 °C?1and 15.3 × 10?6 °C?1 for LDC, ZDC and ZLDC, respectively, in the temperature range 150–1150 °C.  相似文献   

17.
Epoxy resin of 9,9′-bis-(3,5-dibromo-4-hydroxyphenyl) anthrone-10 (EANBr, EEW 490) was synthesized and was characterized by IR and 1HNMR . EANBr and EPK3251 cured resin (EANBrC) were characterized by DSC and TGA at 10°Cmin?1 under nitrogen atmosphere. Broad DSC endothermic transitions of EANBr (265.3 °C) and EANBrC (291.4 °C) are due to some physical change and further confirmed by no weight loss in their TG thermograms. EANBr and EANBrC are thermally stable up to 340 °C and 310 °C, respectively. EANBr has followed single step degradation kinetics, while EANBrC has followed two step degradation kinetics. EANBr followed apparently zero order kinetics, while EANBrC followed apparently second order (1.80) and first order (0.89) degradation kinetics, respectively. Ea and A values of EANBrC (299.7 kJmol?1 and 6.32?×?1020 s?1) were found higher than that of EANBr (201 kJmol?1 and 2.45?×?1013 s?1) due to more rigid nature of EANBrC. The ΔS* value of the first step degradation of EANBrC (146.3 JK?1 mol?1) was found much more than that of EANBr (4.6 JK?1 mol?1). Jute – EANBr composite (J-EANBr) was prepared by compression molding technique at 120 °C for 5 h and under 20 Bar pressure. The observed tensile strength, flexural strength, electric strength and volume resistivity of J-EANBr are 24.7 MPa, 19.0 MPa, 1.8 kVmm?1 and 3.5?×?1012 ohm cm, respectively. Water absorption in J-EANBr was carried out at 30 ± 2 °C against distilled water, 10% NaCl, 10% HCl, 10% HNO3, 10% H2SO4, 10% NaOH, and 10% KOH and also in boiling water. The equilibrium time and equilibrium water content for J-EANBr in different environments are 384–432 h; 12.7–15.2%, respectively. The observed equilibrium water content and diffusivity trends of J-EANBr are KOH>H2SO4>HCl>NaOH>H2O>NaCl and H2O>NaCl>NaOH>H2SO4>HCl>KOH, respectively. Good thermo-mechanical, electrical properties and excellent hydrolytic stability of J-EANBr may be useful for high temperature applications in diverse fields.  相似文献   

18.
Reactive extraction using supercritical carbon dioxide (scCO2) and tri-n-octylamine (TOA) was evaluated as a separation method of succinic acid from an aqueous solution. The reactive extraction of succinic acid was performed at varying initial acid concentrations in aqueous solution (0.07–0.45 mol?dm?3), temperature (35–65°C) and pressure (8–16 MPa). The succinic acid separation was conducted in both batch mode and semi-continuous mode. The highest reactive extraction efficiency of approx. 62% was obtained for the process conducted in semi-continuous mode at 35°C and 16 MPa for the initial acid concentrations in aqueous phase of 0.39 mol?dm?3.  相似文献   

19.
The effects of pretreatments such as citric acid and hot water blanching and air temperature on drying and rehydration characteristics of red kidney bean seeds were investigated. Drying experiments were carried out at four different drying air temperatures of 50°C, 60°C, 70°C, and 80°C. It was observed that drying and rehydration characteristics of bean seeds were greatly influenced by air temperatures and pretreatments. Four commonly used mathematical models were evaluated to predict the drying kinetics of bean seeds. The Weibull model described the drying behaviour of bean seeds at all temperatures better than the other models. The effective moisture diffusivities (Deff) of bean seeds were determined using Fick's law of diffusion. The values of Deff were between 1.25 × 10?9 and 3.58 × 10?9 m2/s. Activation energy was estimated by an Arrhenius-type equation and was determined as 24.62, 21.06, and 20.36 kJ/mol for citric acid, blanch, and control samples, respectively.  相似文献   

20.
Optimization of electrodes for charge storage with appropriate processing conditions places significant challenges in the developments for high performance charge storage devices. In this article, metal cobaltite spinels of formula MCo2O4 (where M = Mn, Zn, Fe, Ni and Co) are synthesized by oxalate decomposition method followed by calcination at three typical temperatures, viz. 350, 550, and 750 °C and examined their performance variation when used as anodes in lithium ion batteries. Phase and structure of the materials are studied by powder x-ray diffraction (XRD) technique. Single phase MnCo2O4,ZnCo2O4 and Co3O4 are obtained for all different temperatures 350 °C, 550 °C and 750 °C; whereas FeCo2O4 and NiCo2O4 contained their constituent binary phases even after repeated calcination. Morphologies of the materials are studied via scanning electron microscopy (SEM): needle-shaped particles of MnCo2O4 and ZnCo2O4, submicron sized particles of FeCo2O4 and agglomerated submicron particle of NiCo2O4 are observed. Galvanostatic cycling has been conducted in the voltage range 0.005–3.0 V vs. Li at a current density of 60 mA g?1 up to 50 cycles to study their Li storage capabilities. Highest observed charge capacities are: MnCo2O4 – 365 mA h g?1 (750 °C); ZnCo2O4 – 516 mA h g?1 (550 °C); FeCo2O4 – 480 mA h g?1 (550 °C); NiCo2O4 – 384 mA h g?1 (750 °C); and Co3O4 – 675 mA h g?1 (350 °C). The Co3O4 showed the highest reversible capacity of 675 mA h g?1; the NiO present in NiCo2O4 acts as a buffer layer that results in improved cycling stability; the ZnCo2O4 with long needle-like shows good cycling stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号