首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diabetes represents one of the main chronic diseases worldwide. Diabetes and its associated complications may be detectable even at early stages in the urinary proteome. In this article we review the current literature on urinary proteomics applied to the study of diabetes and diabetic complications. Further, we present recent data that strongly indicate urinary proteome analysis may be a valuable tool in detecting diabetes-associated pathophysiological changes at an early stage, and also may enable assessment of disease progression and efficacy of therapy. Current data indicate that collagen-derived peptides represent one of the main peptidic components in urine, which are consistently found at reduced levels in diabetes. It is tempting to speculate that this decrease in urinary collagen-derived peptides is related to an increase in extracellular matrix deposition which is a major complication in diabetes. Therefore, urinary proteome analysis might enable noninvasive assessment of this process at an early stage via determination of specific collagen fragments. This may open an avenue towards targeted therapeutic intervention.  相似文献   

2.
Urine proteomics has become a subject of interest, since it has led to a number of breakthroughs in disease diagnostics. Urine contains information not only from the kidney and the urinary tract but also from other organs, thus urinary proteome analysis allows for identification of biomarkers for both urogenital and systemic diseases. The following review gives a brief overview of the analytical techniques that have been in practice for urinary proteomics. MALDI-MS technique and its current application status in this area of clinical research have been discussed. The review comments on the challenges facing the conventional MALDI-MS technique and the upgradation of this technique with the introduction of nanotechnology. This review projects nano-based techniques such as nano-MALDI-MS, surface-assisted laser desorption/ionization, and nanostructure-initiator MS as the platforms that have the potential in trafficking MALDI-MS from the lab to the bedside.  相似文献   

3.
Urinary proteomics has become one of the most attractive subdisciplines in clinical proteomics as the urine is an ideal source for the discovery of noninvasive biomarkers for kidney and nonkidney diseases. This field has been growing rapidly as indicated by >80 original research articles on urinary proteome analyses appearing since 2001, of which 28 (approximately 1/3) had been published within the year 2006. The most common technologies used in recent urinary proteome studies remain gel-based methods (1-DE, 2-DE and 2-D DIGE), whereas LC-MS/MS, SELDI-TOF MS, and CE-MS are other commonly used techniques. In addition, mass spectrometric immunoassay (MSIA) and array technology have also been applied. This review provides an extensive but concise summary of recent applications of urinary proteomics. Proteomic analyses of dialysate and ultrafiltrate fluids derived from renal replacement therapy (or artificial kidney) are also discussed.  相似文献   

4.
Cardiovascular disease (CVD) is the leading cause of death and loss of productive life years in the world. The underlying syndrome of CVD, atherosclerosis, is a complex disease process, which involves lipid metabolism, inflammation, innate and adaptive immunity, and many other pathophysiological aspects. Furthermore, CVD is influenced by genetic as well as environmental factors. Early detection of CVD and identification of patients at risk are crucial to reduce the burden of disease and to allow personalized treatment. As established risk factors fail to accurately predict which part of the population is likely to suffer from the disease, novel biomarkers are urgently needed. Proteomics can play a significant role in identifying these biomarkers. In this review, we describe the progress made in proteome profiling of the atherosclerotic plaque and several novel sources of potential biomarkers, including circulating cells and plasma extracellular vesicles. The importance of longitudinal biobanking in biomarker discovery is highlighted and exemplified by several plaque proteins identified in the biobank study Athero-Express. Finally, we discuss the PTMs of proteins that are involved in atherosclerosis, which may become one of the foci in the ongoing quest for biomarkers through proteomics of plaque and other matrices relevant to the progression of atherosclerosis.  相似文献   

5.
Renal biopsy remains the gold standard test for definitive diagnosis of glomerular diseases. This invasive procedure; however, has a potential risk for serious complications and is contraindicated in some patients. It is therefore essential to search for noninvasive biomarkers for the diagnosis and prognosis of glomerular diseases. The urine is the most appropriate sample for biomarker discovery in glomerular diseases. Urinary proteomics has thus gained a wide acceptance and has been extensively applied to this area. This review focuses mainly on applications of proteomic technologies to urinary proteome profiling for biomarker discovery in various glomerular diseases, including diabetic nephropathy, IgA nephropathy, membranous nephropathy, focal segmental glomerulosclerosis, primary membranoproliferative glomerulonephritis, lupus nephritis, antiglomerular basement membrane disease, minimal change disease, and pediatric nephrotic syndrome. Recent findings from these studies are summarized and discussed. These data clearly underline the great promise of urinary proteomics in biomarker discovery for glomerular diseases.  相似文献   

6.
7.
The development of MALDI ESI in the late 1980s has revolutionized the biological sciences and facilitated the emergence of a new discipline called proteomics. Application of proteomics to human cerebrospinal fluid (CSF) has greatly hastened the advancement of characterizing the CSF proteome as well as revealing novel protein biomarkers that are diagnostic of various neurological diseases. While impressive progressions have been made in this field, it has become increasingly clear that proteomics results generated by various laboratories are highly variable. The underlying issues are vast, including limitations and complications with heterogeneity of patients/testing subjects, experimental design, sample processing, as well as current proteomics technology. Accordingly, this review not only summarizes the current status of characterization of the human CSF proteome and biomarker discovery for major neurodegenerative disorders, i.e., Alzheimer's disease and Parkinson's disease, but also addresses a few essential caveats involved in several steps of CSF proteomics that may contribute to the variable/contradicting results reported by different laboratories. The potential future directions of CSF proteomics are also discussed with this analysis.  相似文献   

8.
In this viewpoint article, the importance of renal tissue proteomics in health and disease is explored. The analysis of the urinary proteome and the potential clinical application of these findings are progressing. However, additional benefit would be gained from a detailed parallel exploration of the proteome of the renal parenchyma, both in models and clinical samples. With this aim, we will briefly summarize the existing literature, compare the findings and propose future tasks. Special emphasis is placed on the importance of studying specific cellular compartments and cell types within the kidney. Recent technical advances are also discussed. It is anticipated that the combination of such technologies, especially proteomic analysis of material extracted by laser capture microdissection from paraffin embedded tissue or direct mass spectrometrical tissue imaging, will revolutionize the field.  相似文献   

9.
Human urinary proteome analysis is a convenient and efficient approach for understanding disease processes affecting the kidney and urogenital tract. Many potential biomarkers have been identified in previous differential analyses; however, dynamic variations of the urinary proteome have not been intensively studied, and it is difficult to conclude that potential biomarkers are genuinely associated with disease rather then simply being physiological proteome variations. In this paper, pooled and individual urine samples were used to analyze dynamic variations in the urinary proteome. Five types of pooled samples (first morning void, second morning void, excessive water‐drinking void, random void, and 24 h void) collected in 1 day from six volunteers were used to analyze intra‐day variations. Six pairs of first morning voids collected a week apart were used to study inter‐day, inter‐individual, and inter‐gender variations. The intra‐day, inter‐day, inter‐individual, and inter‐gender variation analyses showed that many proteins were constantly present with relatively stable abundances, and some of these had earlier been reported as potential disease biomarkers. In terms of sensitivity, the main components of the five intra‐day urinary proteomes were similar, and the second morning void is recommended for clinical proteome analysis. The advantages and disadvantages of pooling samples are also discussed. The data presented describe a pool of stable urinary proteins seen under different physiological conditions. Any significant qualitative or quantitative changes in these stable proteins may mean that such proteins could serve as potential urinary biomarkers.  相似文献   

10.
We have investigated urine obtained from Sprague Dawley rats before and after administration of cis-Platin, aiming at the definition of biomarkers for drug-induced cytotoxicity. Rats were treated with 3 or 6 mg/kg cis-Platin (i.p., single injection) and urine samples were collected before and after drug or saline treatment. Analysis of the low molecular weight proteome (<20 kDa) using capillary-electrophoresis coupled mass spectrometry allowed us to tentatively identify 34 urinary peptides that show significant differences between control and treated animals, and hence may serve as a potential biomarker for cis-Platin-induced nephrotoxicity. These biomarkers were confirmed in a blinded assessment of additional samples. The blinded data also revealed time-dependency of induced changes. Some of the potential biomarkers could be sequenced. This information revealed great similarity between cis-Platin-induced changes and significant changes in the urinary proteome of patients suffering from tubular injury (Fanconi syndrome). Our study strongly suggests that (drug-induced) nephrotoxicity can be detected with high accuracy in laboratory rodents using urinary proteome analysis. The effects observed are very similar to those seen in corresponding human diseases and similar approaches may be very helpful in evaluating drug-induced organ damage in preclinical animal models. This study aiming at the definition of biomarkers for drug-induced cytotoxicity may serve as a proof-of-principle for the use of urinary proteomics in assessment of drug-induced nephrotoxicity.  相似文献   

11.
Serum and plasma from which serum is derived represent a substantial challenge for proteomics due to their complexity. A landmark plasma proteome study was initiated a decade ago by the Human Proteome Organization (HUPO) that had as an objective to examine the capabilities of existing technologies. Given the advances in proteomics and the continued interest in the plasma proteome, it would timely reassess the depth and breadth of analysis of plasma that can be achieved with current methodology and instrumentation. A collaborative project to define the plasma proteome and its variation, with a plan to build a plasma proteome database would be timely.  相似文献   

12.
Human tear fluid is charactered with very small volume and complex protein constitutes with a very large orders of magnitude. The tear proteome analysis provides a unique dataset (i.e., specific protein markers or protein patterns) that may be correlated to more effective diagnosis, prognosis, and response to therapy. Compared to less than 100 tear proteins obtained by the traditional methods, more than 400 proteins have been found in human tear fluid by current proteomic technologies. Many proteomics techniques, such as 2-DE, MALDI-TOF-MS, LC-MS, SELDI-TOF-MS, protein arrays, have been used to perform tear proteome analysis in healthy and/or disease subjects. The clinical application of tear proteomics needs suitable tear collection methods, standard tear handling procedures, and more sensitive and reliable proteomic technologies.  相似文献   

13.
Investigation of the human specimens is an essential element for understanding the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. The studies hold promise for identifying biomarkers for diagnosis and prognosis, elucidating disease mechanisms, and accelerating the development of new strategies for therapeutic intervention. Here, we review proteomics studies of human brain samples in light of recent advances of mass spectrometry, focusing on the general strategies for experimental design and analysis (e.g., sample pooling and replication, selection of proteomics platforms, and false discovery rate in data processing), because quantitative analysis of clinical samples is confounded by a number of variables, including genetic differences, antemortem and postmortem factors, and experimental errors. Diverse proteomics platforms are also discussed with respect to sensitivity, throughput, and accuracy. Regarding the enormous complexity of the human brain and the limitation of current proteomics technologies, it may be more practical to analyze a subset of proteome in a functional context, in order to facilitate the identification of important disease-related proteins in the substantial noise reflecting biological and technical variances.  相似文献   

14.
The increasing application of proteomic methods to biomedical research is providing us with important new information; it holds particular promise in advancing basic and clinical renal research, but whether proteomics can ever become a routine diagnostic tool in nephrology is still uncertain. Currently, proteomic techniques are used by many groups in the search for "biomarkers" of disease, especially kidney disease, because of the ready availability of urine as an "end-product" of renal function. However, the question as to whether any disease-specific biomarkers exist or can be identified by proteomics is also uncertain. A growing application of proteomics in biomedical research is to understand the mechanism(s) of disease. This brief review is selective; in it we consider examples of proteomic studies of human urine for biomarkers, others that have explored renal physiology, and still others that have begun to probe the proteome of organelles. No single approach is sufficiently comprehensive, and the pooled application of proteomics to renal research will undoubtedly improve our understanding of renal function and enable us to explore in more detail subcellular structures, and to characterize cellular processes at the molecular level. When combined with other techniques in renal research, proteomics, and related analytical methods could prove indispensable in modeling renal function, and perhaps also in diagnosis and management of renal disease.  相似文献   

15.
Extensive technical advances in the past decade have substantially expanded quantitative proteomics in cardiovascular research. This has great promise for elucidating the mechanisms of cardiovascular diseases and the discovery of cardiac biomarkers used for diagnosis and treatment evaluation. Global and targeted proteomics are the two major avenues of quantitative proteomics. While global approaches enable unbiased discovery of altered proteins via relative quantification at the proteome level, targeted techniques provide higher sensitivity and accuracy, and are capable of multiplexed absolute quantification in numerous clinical/biological samples. While promising, technical challenges need to be overcome to enable full utilization of these techniques in cardiovascular medicine. Here, we discuss recent advances in quantitative proteomics and summarize applications in cardiovascular research with an emphasis on biomarker discovery and elucidating molecular mechanisms of disease. We propose the integration of global and targeted strategies as a high-throughput pipeline for cardiovascular proteomics. Targeted approaches enable rapid, extensive validation of biomarker candidates discovered by global proteomics. These approaches provide a promising alternative to immunoassays and other low-throughput means currently used for limited validation.  相似文献   

16.
Analysis of the human proteome has become increasingly sophisticated, and offers invaluable potential insight into the pathophysiology of human disease. The increasing standardization of methods, speed, and sophistication of mass spectrometric analysis, availability of reliable antibodies, and dissemination of information among the scientific community has allowed for exponential growth of our knowledge base. The continued effort to provide a molecular explanation for future medical applications based on biomarker discovery is epitomized by the outstanding efforts of the human proteome project, whose goal is to generate a map of the human proteome. However, proteomic analysis is underrepresented in pediatric illness; given the unique challenges of research in the pediatric population, proteomic analysis represents enormous untapped potential, especially in the further elucidation of the pathophysiology of rare diseases such as pulmonary hypertension (PH). In this article, we will describe the unique challenge of pediatric research, the importance of alternative avenues such as proteomics for in-depth analysis of pediatric pathobiology at the cellular level, the specific need for proteomic investigation of pediatric PH, the current status of PH proteomics, and future directions.  相似文献   

17.
Knowledge of the biologically relevant components of human tissues has enabled the invention of numerous clinically useful diagnostic tests, as well as non-invasive ways of monitoring disease and its response to treatment. Recent use of advanced MS-based proteomics revealed that the composition of human urine is more complex than anticipated. Here, we extend the current characterization of the human urinary proteome by extensively fractionating urine using ultra-centrifugation, gel electrophoresis, ion exchange and reverse-phase chromatography, effectively reducing mixture complexity while minimizing loss of material. By using high-accuracy mass measurements of the linear ion trap-Orbitrap mass spectrometer and LC-MS/MS of peptides generated from such extensively fractionated specimens, we identified 2362 proteins in routinely collected individual urine specimens, including more than 1000 proteins not described in previous studies. Many of these are biomedically significant molecules, including glomerularly filtered cytokines and shed cell surface molecules, as well as renally and urogenitally produced transporters and structural proteins. Annotation of the identified proteome reveals distinct patterns of enrichment, consistent with previously described specific physiologic mechanisms, including 336 proteins that appear to be expressed by a variety of distal organs and glomerularly filtered from serum. Comparison of the proteomes identified from 12 individual specimens revealed a subset of generally invariant proteins, as well as individually variable ones, suggesting that our approach may be used to study individual differences in age, physiologic state and clinical condition. Consistent with this, annotation of the identified proteome by using machine learning and text mining exposed possible associations with 27 common and more than 500 rare human diseases, establishing a widely useful resource for the study of human pathophysiology and biomarker discovery.  相似文献   

18.
Spirochetes are a unique group of bacteria that include several motile and highly invasive pathogens that cause a multitude of acute and chronic disease processes. Nine genomes of spirochetes have been completed, which provide significant insights into pathogenic mechanisms of disease and reflect an often complex lifestyle associated with a wide range of environmental and host factors encountered during disease transmission and infection. Characterization of the outer membrane of spirochetes is of particular interest since it interacts directly with the host and environs during disease and likely contains candidate vaccinogens and diagnostics. In concert with appropriate fractionation techniques, the tools of proteomics have rapidly evolved to characterize the proteome of spirochetes. Of greater significance, studies have confirmed the differential expression of many proteins, including those of the outer membrane, in response to environmental signals encountered during disease transmission and infection. Characterization of the proteome in response to such signals provides novel insights to understand pathogenic mechanisms of spirochetes.  相似文献   

19.
Diabetes mellitus (DM) is currently one of the principal causes of end stage renal disease (ESRD). Approximately 40% of all diabetic patients eventually develop diabetic nephropathy (DN). The complexity of diabetes and its complications require a broad-based, unbiased, scientific approach, such as proteomics, in order to understand the progression of DN. Proteomic techniques have been applied extensively to explore the complexity of the mechanisms associated with DN, and to identify novel biomarkers and therapeutic targets. This review provides insights into how proteomics can be applied to DN, and how experimental data can be linked to clinical applications. In addition, recent proteome studies of DN are summarized. The rapid rate of development of the relevant technologies, along with the combination of classic physiological and biochemical techniques with proteomics will facilitate new discoveries.  相似文献   

20.
Identification of the molecular mechanisms of host-pathogen interaction is becoming a key focus of proteomics. Analysis of these interactions holds promise for significant developments in the identification of new therapeutic strategies to combat infectious diseases, a process that will also benefit parallel improvements in molecular diagnostics, biomarker identification and drug discovery. This review highlights recent advances in functional proteomics initiatives in infectious disease with emphasis on studies undertaken within physiologically relevant parameters that enable identification of the infectious proteome rather than that of the vegetative state. Deciphering the molecular details of what constitutes physiologically relevant host-pathogen interactions remains an underdeveloped aspect of research into infectious disease. The magnitude of this deficit will be largely influenced by the ease with which model systems can be established to investigate such interactions. As the selective pressures exerted by the host on an infecting pathogen are numerous, the adequacy of certain model systems should be considered carefully.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号