首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
几何不变性及其在3D物体识别中的应用   总被引:4,自引:0,他引:4       下载免费PDF全文
三维物体识别是计算机视觉研究的重要内容之一,它要求从3D物体的2D图象中识别和定位物体.由于物体成像时会受到观察视角、摄像机参数的影响,因此使得同一物体在不同观察视角、不同摄像机参数等条件下所得到的图象存在差异.但由于几何不变性方法可以有效地消除这种差异带给3D物体识别的不利影响,所以,近20年来这种方法受到了广泛的关注和研究.为使人们了解该领域的研究现状,以对该领域的研究有所启发,首先讨论了基于几何不变性的3D物体识别方法的研究内容,包括研究的几何框架和其不变性以及几何不变性在3D物体识别中的主要应用;其次,总结性地评述了该领域的研究现状;最后,提出了研究的发展方向.  相似文献   

2.
局部描述符(如SIFT)方法能够将图像中关键点的局部表观信息作为图像的特征,具有旋转不变性、尺度变换不变性、仿射不变性等性质,被广泛应用于物体分类、物体识别、图像匹配等领域。但是,它存在一个重要缺陷:只能描述物体的局部特征,忽略了整个物体的构造,而这在表示物体时是非常重要的。设计了一个新的"结构上下文"局部描述符,通过当前关键点和其他关键点间的空间拓扑结构关系描述各个关键点的特征。实验证明这种描述符在描述相同物体种类时特别有效。  相似文献   

3.
A major problem in object recognition is that a novel image of a given object can be different from all previously seen images. Images can vary considerably due to changes in viewing conditions such as viewing position and illumination. In this paper we distinguish between three types of recognition schemes by the level at which generalization to novel images takes place: universal, class, and model-based. The first is applicable equally to all objects, the second to a class of objects, and the third uses known properties of individual objects. We derive theoretical limitations on each of the three generalization levels. For the universal level, previous results have shown that no invariance can be obtained. Here we show that this limitation holds even when the assumptions made on the objects and the recognition functions are relaxed. We also extend the results to changes of illumination direction. For the class level, previous studies presented specific examples of classes of objects for which functions invariant to viewpoint exist. Here, we distinguish between classes that admit such invariance and classes that do not. We demonstrate that there is a tradeoff between the set of objects that can be discriminated by a given recognition function and the set of images from which the recognition function can recognize these objects. Furthermore, we demonstrate that although functions that are invariant to illumination direction do not exist at the universal level, when the objects are restricted to belong to a given class, an invariant function to illumination direction can be defined. A general conclusion of this study is that class-based processing, that has not been used extensively in the past, is often advantageous for dealing with variations due to viewpoint and illuminant changes.  相似文献   

4.
Shape Reconstruction of 3D Bilaterally Symmetric Surfaces   总被引:1,自引:0,他引:1  
The paper presents a new approach for shape recovery based on integrating geometric and photometric information. We consider 3D bilaterally symmetric objects, that is, objects which are symmetric with respect to a plane (e.g., faces), and their reconstruction from a single image. Both the viewpoint and the illumination are not necessarily frontal. Furthermore, no correspondence between symmetric points is required.The basic idea is that an image taken from a general, non frontal viewpoint, under non-frontal illumination can be regarded as a pair of images. Each image of the pair is one half of the object, taken from different viewing positions and with different lighting directions. Thus, one-image-variants of geometric stereo and of photometric stereo can be used. Unlike the separate invocation of these approaches, which require point correspondence between the two images, we show that integrating the photometric and geometric information suffice to yield a dense correspondence between pairs of symmetric points, and as a result, a dense shape recovery of the object. Furthermore, the unknown lighting and viewing parameters, are also recovered in this process.Unknown distant point light source, Lambertian surfaces, unknown constant albedo, and weak perspective projection are assumed. The method has been implemented and tested experimentally on simulated and real data.  相似文献   

5.
Three-dimensional shape from color photometric stereo   总被引:1,自引:0,他引:1  
Computer vision systems can be used to determine the shapes of real three-dimensional objects for purposes of object recognition and pose estimation or for CAD applications. One method that has been developed is photometric stereo. This method uses several images taken from the same viewpoint, but with different lightings, to determine the three-dimensional shape of an object. Most previous work in photometric stereo has been with gray-tone images; color images have only been used for dielectric materials. In this paper we describe a procedure for color photometric stereo, which recovers the shape of a colored object from two or more color images of the object under white illumination. This method can handle different types of materials, such as composites and metals, and can employ various reflection models such as the Lambertian, dichromatic, and Torrance-Sparrow models. For composite materials, colored metals, and dielectrics, there are two advantages of utilizing color information: at each pixel, there are more constraints on the orientation, and the result is less sensitive to noise. Consequently, the shape can be found more accurately. The method has been tested on both artificial and real images of objects of various materials, and on real images of a multi-colored object.  相似文献   

6.
The viewpoint consistency constraint   总被引:3,自引:1,他引:2  
  相似文献   

7.
A central task of computer vision is to automatically recognize objects in real-world scenes. The parameters defining image and object spaces can vary due to lighting conditions, camera calibration and viewing position. It is therefore desirable to look for geometric properties of the object which remain invariant under such changes in the observation parameters. The study of such geometric invariance is a field of active research. This paper presents the theory and computation of projective invariants formed from points and lines using the geometric algebra framework. This work shows that geometric algebra is a very elegant language for expressing projective invariants using n views. The paper compares projective invariants involving two and three cameras using simulated and real images. Illustrations of the application of such projective invariants in visual guided grasping, camera self-localization and reconstruction of shape and motion complement the experimental part.  相似文献   

8.
9.
Moment invariants for recognition under changing viewpoint and illumination   总被引:1,自引:0,他引:1  
Generalised color moments combine shape and color information and put them on an equal footing. Rational expressions of such moments can be designed, that are invariant under both geometric deformations and photometric changes. These generalised color moment invariants are effective features for recognition under changing viewpoint and illumination. The paper gives a systematic overview of such moment invariants for several combinations of deformations and photometric changes. Their validity and potential is corroborated through a series of experiments. Both the cases of indoor and outdoor images are considered, as illumination changes tend to differ between these circumstances. Although the generalised color moment invariants are extracted from planar surface patches, it is argued that invariant neighbourhoods offer a concept through which they can also be used to deal with 3D objects and scenes.  相似文献   

10.
由先验知识我们知道,2D人脸正面图像几何对称;然而,当姿态发生变化时,对于人脸这样的不规则3D几何体,不同的视角、不同的摄像机参数使得在透视成像下得到的图像也不同,并且发现正面人脸具有的对称特性也消失了,因此3D人脸的识别是十分困难的;提出一种从人脸特征的结构特殊性出发,利用2D人脸形状、面部特征等内在的几何约束关系构造射影不变的特征参数、特征关系的射影不变性,同时结合颜色物理信息的人脸检测定位方法,有效地避免了构造3D人脸模型的难题,增强了实验结果的效率、可靠性和稳定性.  相似文献   

11.
Object recognition and content-based image retrieval systems rely heavily on the accurate and efficient identification of 2-D shapes. Features such as color, texture, positioning etc., are insufficient to convey the information that could be obtained through shape analysis. A fundamental requirement in this analysis is that shape similarities are computed invariantly to basic geometric transformations, e.g., scaling, shifting, and most importantly, rotations. And while scale and shift invariance are easily achievable through a suitable shape representation, rotation invariance is much harder to deal with. In this work, we explore the metric properties of the rotation-invariant distance measures and propose an algorithm for fast similarity search in the shape space. The algorithm can be utilized in a number of important data mining tasks such as shape clustering and classification, or for discovering of motifs and discords in large image collections. The technique is demonstrated to introduce a dramatic speed-up over the current approaches, and is guaranteed to introduce no false dismissals.  相似文献   

12.
轮廓矩不变量及其在物体形状识别中的应用   总被引:13,自引:2,他引:13  
为了有效地刻画物体的形状特征,在基于区域的Hu矩不变量的基础上,构造了一种基于物体轮廓曲线的新的矩不变量,即轮廓矩不变量。该不变量不仅独立于物体本身的颜色和灰度级,而且具有平移、旋转和尺度不变性,因此可将轮廓矩不变量应用于物体形状的识别,为了能快速地进行物体形状识别,还讨论了小波边缘检测和轮廓的获取问题及其算法。实验表明,基于这种轮廓矩的识别算法具有很好的识别率。  相似文献   

13.
目的视觉目标的形状特征表示和识别是图像领域中的重要问题。在实际应用中,视角、形变、遮挡和噪声等干扰因素造成识别精度较低,且大数据场景需要算法具有较高的学习效率。针对这些问题,本文提出一种全尺度可视化形状表示方法。方法在尺度空间的所有尺度上对形状轮廓提取形状的不变量特征,获得形状的全尺度特征。将获得的全部特征紧凑地表示为单幅彩色图像,得到形状特征的可视化表示。将表示形状特征的彩色图像输入双路卷积网络模型,完成形状分类和检索任务。结果通过对原始形状加入旋转、遮挡和噪声等不同干扰的定性实验,验证了本文方法具有旋转和缩放不变性,以及对铰接变换、遮挡和噪声等干扰的鲁棒性。在通用数据集上进行形状分类和形状检索的定量实验,所得准确率在不同数据集上均超过对比算法。在MPEG-7数据集上精度达到99.57%,对比算法的最好结果为98.84%。在铰接和射影变换数据集上皆达到100%的识别精度,而对比算法的最好结果分别为89.75%和95%。结论本文提出的全尺度可视化形状表示方法,通过一幅彩色图像紧凑地表达了全部形状信息。通过卷积模型既学习了轮廓点间的形状特征关系,又学习了不同尺度间的形状特征关系。本文方法...  相似文献   

14.
15.
Probabilistic Models of Appearance for 3-D Object Recognition   总被引:6,自引:0,他引:6  
We describe how to model the appearance of a 3-D object using multiple views, learn such a model from training images, and use the model for object recognition. The model uses probability distributions to describe the range of possible variation in the object's appearance. These distributions are organized on two levels. Large variations are handled by partitioning training images into clusters corresponding to distinctly different views of the object. Within each cluster, smaller variations are represented by distributions characterizing uncertainty in the presence, position, and measurements of various discrete features of appearance. Many types of features are used, ranging in abstraction from edge segments to perceptual groupings and regions. A matching procedure uses the feature uncertainty information to guide the search for a match between model and image. Hypothesized feature pairings are used to estimate a viewpoint transformation taking account of feature uncertainty. These methods have been implemented in an object recognition system, OLIVER. Experiments show that OLIVER is capable of learning to recognize complex objects in cluttered images, while acquiring models that represent those objects using relatively few views.  相似文献   

16.
17.
18.
We address the problem of object detection and segmentation using global holistic properties of object shape. Global shape representations are highly susceptible to clutter inevitably present in realistic images, and thus can be applied robustly only using a precise segmentation of the object. To this end, we propose a figure/ground segmentation method for extraction of image regions that resemble the global properties of a model boundary structure and are perceptually salient. Our shape representation, called the chordiogram, is based on geometric relationships of object boundary edges, while the perceptual saliency cues we use favor coherent regions distinct from the background. We formulate the segmentation problem as an integer quadratic program and use a semidefinite programming relaxation to solve it. The obtained solutions provide a segmentation of the object as well as a detection score used for object recognition. Our single-step approach achieves state-of-the-art performance on several object detection and segmentation benchmarks.  相似文献   

19.
受生物学研究启发,模拟视皮层组织结构提出了ColorMax层次模型用于彩色图像识别问题。利用ColorMax模型进行学习能得到较高层次的复杂仿真视觉特征,这些特征具有较好的识别可分性和不变性。利用该模型实现基于对象颜色、纹理和形状的综合特征识别与比较。实验结果表明,提出的模型能够在学习样本数量少的情况下进行学习,提高了识别的速度,能达到与当前先进算法相当识别效果。  相似文献   

20.
Zernike矩作为一种基于区域的形状描述子,具有良好的旋转不变性,能够很好地提取图像内部的形状信息,广泛应用于基于内容的图像检索(CBIR)、图像描述、物体定向及模式识别等各个领域.介绍了Zernike矩的定义和基本特性,并对Zernike矩算法提出了改进,使其具有较好的比例不变性,最后讨论了Zernike矩在基于内容的文物图像检索系统中的应用,同时给出部分实验数据和实验结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号