首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimization of energy management strategy (EMS) for fuel cell/battery/ultracapacitor hybrid electrical vehicle (FCHEV) is primarily aimed on reducing fuel consumption. However, serious power fluctuation has effect on the durability of fuel cell, which still remains one challenging barrier for FCHEVs. In this paper, we propose an optimized frequency decoupling EMS using fuzzy control method to extend fuel cell lifespan and improve fuel economy for FCHEV. In the proposed EMS, fuel cell, battery and ultracapacitor are employed to supply low, middle and high-frequency components of required power, respectively. For accurately adjusting membership functions of proposed fuzzy controllers, genetic algorithm (GA) is adopted to optimize them considering multiple constraints on fuel cell power fluctuation and hydrogen consumption. The proposed EMS is verified by Advisor-Simulink and experiment bench. Simulation and experimental results confirm that the proposed EMS can effectively reduce hydrogen consumption in three typical drive cycles, limit fuel cell power fluctuation within 300 W/s and thus extend fuel cell lifespan.  相似文献   

2.
Road freight transport on hilly routes represents a significant challenge for the advancement of fuel cell electric trucks because of the high-performance requirements for fuel consumption, vehicle lifetime, and battery charge control. Therefore, it is essential to optimize the vehicle design and energy management, which greatly influence the driving performance and total cost of ownership. This paper focuses on the cost-optimal design and energy management of fuel cell electric trucks, considering five key influencing factors: powertrain component sizing, driving cycle, vehicle weight, component degradation, and market prices. The cost optimization relies on a novel predictive energy management scheme based on dynamic programming and the systematic calibration of control parameters. The paper analyzes the simulation results to highlight three main findings for fuel cell electric trucks: 1) cost-optimal energy management is essential to define the best trade-off between fuel consumption and component degradation; 2) the total cost of ownership is significantly influenced by component sizing, driving cycles, vehicle weight, and market prices; 3) predictive energy management is highly beneficial in challenging road topographies for substantial cost-saving and lower component size requirements.  相似文献   

3.
An optimal design of a three-component hybrid fuel cell electric vehicle comprised of fuel cells, battery, and supercapacitors is presented. First, the benefits of using this hybrid combination are analyzed, and then the article describes an active power-flow control strategy from each energy source based on optimal control theory to meet the demand of different vehicle loads while optimizing total energy cost, battery life and other possible objectives at the same time. A cost function that minimizes the square error between the desired variable settings and the current sensed values is developed. A gain sequence developed compels the choice of power drawn from all devices to follow an optimal path, which makes trade-offs among different targets and minimizes the total energy spent. A new method is introduced to make the global optimization into a real-time based control. A model is also presented to simulate the individual energy storage systems and compare this invention to existing control strategies, the simulation results show that the total energy spent is well saved over the long driving cycles, also the fuel cell and batteries are kept operating in a healthy way.  相似文献   

4.
A proton electrolyte membrane (PEM) fuel cell system and a Li-ion battery (LIB) are two power sources in a fuel cell electric vehicle (FCEV). The fuel cell system is composed of a fuel cell stack and subsystems for air/hydrogen supply and cooling water. The operation procedure of the fuel cell system can be generally separated into several processes, e.g. starting up, normal/abnormal working and shutting down. In this paper, a multi-mode real-time control strategy for a FCEV is proposed. The strategy is established based on three typical processes (starting up, normal working, shutting down) of the fuel cell system, taking the fuel economy and system durability into consideration. The strategy is applied into a platform vehicle for the 12th 5-year project of “the next generation technologies of fuel cell city buses”. Experiments of the “China city bus typical cycle” on a test bench for the bus were carried out. Results show that, the fuel economy is 7.6 kg (100 km)−1 in the battery charge-sustaining status. In a practical situation, a total driving mileage of more than 270 km can be achieved. Cycle testing also showed that, the degradation rate of the fuel cell was reduced to half of the original level. No performance degradation of the LIB system was observed in the cycling test.  相似文献   

5.
Energy management strategy (EMS) based on optimized deep reinforcement learning plays a critical role in minimizing fuel consumption and prolonging the fuel cell stack lifespan for fuel cell hybrid vehicles. The deep Q-learning (DQL) and deep deterministic policy gradient (DDPG) algorithms with priority experience replay are proposed in this research. The factors of fuel economy and power fluctuation are incorporated into the multi-objective reward functions to decline the fuel consumption and extend the lifetime of fuel cell stack. In addition, the degradation rate is introduced to reflect the lifetime of fuel cell stack. Furthermore, compared to the referenced optimally energy management strategy (dynamic planning), the DQL-based and DDPG-based EMS with prioritized experience replay (DQL-PER, DDPG-PER) are evaluated in hydrogen consumption and cumulative degradation of fuel cell stack under four driving cycles, FTP75, US06-2, NEDC and LA92-2, respectively. The training results reveal that the DQL-PER-based EMS performances better under FTP75 and US06-2 driving cycles, whereas DDPG-PER-based EMS has better performance under NEDC driving cycle, which provide a potential for applying the proposed algorithm into multi-cycles.  相似文献   

6.
Hybrid fuel cell battery electric vehicles require complex energy management systems (EMS) in order to operate effectively. Poor EMS can result in a hybrid system that has low efficiency and a high rate of degradation of the fuel cell and battery pack. Many different types of EMS have been reported in the literature, such as equivalent consumption minimisation strategy and fuzzy logic controllers, which typically focus on a single objective optimisations, such as minimisation of H2 usage. Different vehicle and system specifications make the comparison of EMSs difficult and can often lead to misleading claims about system performance. This paper aims to compare different EMSs, against a range of performance metrics such as charge sustaining ability and fuel cell degradation, using a common modelling framework developed in MATLAB/Simulink - the Electric Vehicle Simulation tool-Kit (EV-SimKit). A novel fuzzy logic controller is also presented which mutates the output membership function depending on fuel cell degradation to prolong fuel cell lifetime – the Mutative Fuzzy Logic Controller (MFLC). It was found that while certain EMSs may perform well at reducing H2 consumption, this may have a significant impact on fuel cell degradation, dramatically reducing the fuel cell lifetime. How the behaviour of common EMS results in fuel cell degradation is also explored. Finally, by mutating the fuzzy logic membership functions, the MFLC was predicted to extend fuel cell lifetime by up to 32.8%.  相似文献   

7.
Fuel cell hybrid power system is a prospective power source for electrical vehicles. To reduce hydrogen consumption and enhance dynamic performance of the system, Action Dependent Heuristic Dynamic Programming (ADHDP) energy management strategy for the fuel cell hybrid power system was proposed. Firstly, topology of the system was analyzed and mathematical model was established through mechanism analysis. Secondly, framework of the ADHDP algorithm was presented, and it was followed by training algorithm for evaluating network and executing network of ADHDP based on Back Propagation (BP) algorithm. Finally, hardware-in-the-loop (HIL) simulation of the fuel cell hybrid power system was carried out to demonstrate the proposed ADHDP algorithm under real operating conditions. The results show that evaluating network and executing network of ADHDP have good convergence performance under different operating conditions. Compared with the other algorithms, the proposed ADHDP energy management strategy has better fuel economy and dynamic performance.  相似文献   

8.
Fuel Cell Hybrid Vehicles (FCHV) can reach near zero emission by removing the conventional internal combustion from the vehicle powertrain. Nevertheless, before seeing competitive and efficient FCHV on the market, at market prices, different technical, economic, and social challenges should be overcome. A typical hybrid fuel cell powertrain combines a fuel cell stack and a dedicated energy storage system along with their necessary power converters. Energy storage systems are used in order to enhance the well-to-wheel efficiency and thus reducing the hydrogen consumption. An efficient management of power flows on the vehicle, allows optimizing the recovery of energy braking. Moreover, working in the fuel cell maximum efficiency leads to reduced thermal losses and thus to the downsizing of the heat exchangers. This paper presents an enhanced control of the power flows on a FCHV in order to reduce the hydrogen consumption, by generating and storing the electrical energy only at the most suitable moments on a given driving cycle. While the off-line optimization-based on dynamic programming algorithm offers the necessary optimal comparison reference on a known demand, the proposed strategy which can be implemented on-line, is based on a fuzzy logic decision system. The fine tuning of the fuzzy system parameters (mainly the membership functions and the gains), is made using a genetic algorithm and the fuzzy supervisor shows performing results for different load profiles.  相似文献   

9.
Traditional optimization-based energy management strategies (EMSs) do not consider the uncertainty of driving cycle induced by the change of traffic conditions, this paper proposes a robust online EMS (ROEMS) for fuel cell hybrid electric vehicles (FCHEV) to handle the uncertain driving cycles. The energy consumption model of the FCHEV is built by considering the power loss of fuel cell, battery, electric motor, and brake. An offline linear programming-based method is proposed to produce the benchmark solution. The ROEMS instantaneously minimizes the equivalent power of fuel cell and battery, where an equivalent efficiency of battery is defined as the efficiency of hydrogen energy transforming to battery energy. To control the state of charge of battery, two control coefficients are introduced to adjust the power of battery in objective function. Another penalty coefficient is used to amend the power of fuel cell, which reduces the load change of fuel cell so as to slow the degradation of fuel cell. The simulation results indicate that ROEMS has good performance in both fuel economy and load change control of fuel cell. The most important advantage of ROEMS is its robustness and adaptivity, because it almost produces the optimal solution without changing the control parameters when driving cycles are changed.  相似文献   

10.
This paper focuses on energy management in an ultra-energy efficient vehicle powered by a hydrogen fuel cell with rated power of 1 kW. The vehicle is especially developed for the student competition Shell Eco-marathon in the Urban Concept category. In order to minimize the driving energy consumption a simulation model of the vehicle and the electric propulsion is developed. The model is based on vehicle dynamics and real motor efficiency as constant DC/DC, motor controllers and transmission efficiency were considered. Based on that model five propulsion schemes and driving strategies were evaluated. The fuel cell output parameters were experimentally determined. Then, the driving energy demand and hydrogen consumption was estimated for each of the propulsion schemes. Finally, an experimental study on fuel cell output power and hydrogen consumption was conducted for two propulsion schemes in case of hybrid and non-hybrid power source. In the hybrid propulsion scheme, supercapacitors were used as energy storage as they were charged from the fuel cell with constant current of 10 A.  相似文献   

11.
A real-time energy management system for an off-grid smart home is presented in this paper. The primary energy sources for the system are wind turbine and photovoltaics, with a fuel cell serving as a supporting energy source. Surplus power is used to generate hydrogen through an electrolyzer. Data on renewable energy and load demand is gathered from a real smart home located in the Yildiz Technical University Smart Home Laboratory. The aim of the study is to reduce hydrogen consumption and effectively utilize surplus renewable energy by managing controllable loads with fuzzy logic controller, all while maintaining the user's comfort level. Load shifting and tuning are used to increase the demand supplied by renewable energy sources by 10.8% and 13.65% from wind turbines and photovoltaics, respectively. As a result, annual hydrogen consumption is reduced by 7.03%, and the average annual efficiency of the fuel cell increases by 4.6%  相似文献   

12.
As the energy transformation in the transportation sector is taking place driven by the development of fuel cell technologies, fuel cell hybrid electric vehicles become promising solutions owing to their long driving duration and zero emissions. However, the unsatisfied lifespan of fuel cells is an inevitable obstacle for their massive commercialization. This paper aims to propose an online adaptive prognostics-based health management strategy for fuel cell hybrid electric vehicles, which can improve the durability of the fuel cell thanks to online health monitoring. Here, particle filtering method is adapted for online fuel cell prognostics and the uncertainty of the predicted results is calculated based on the distribution of particles. A health management strategy is developed based on prognostics and a decision-making process is designed by considering the prognostics uncertainty through a decision fusion method. The obtained results show that the developed strategy has effectively improved the durability of the on-board fuel cell by up to 95.4%. Moreover, a sensitivity analysis of the prognostics occurrence frequency and probability calculation has also been conducted in this paper.  相似文献   

13.
Fuel cell vehicles, as a substitute for internal-combustion-engine vehicles, have become a research hotspot for most automobile manufacturers all over the world. Fuel cell systems have disadvantages, such as high cost, slow response and no regenerative energy recovery during braking; hybridization can be a solution to these drawbacks. This paper presents a fuel cell hybrid bus which is equipped with a fuel cell system and two energy storage devices, i.e., a battery and an ultracapacitor. An energy management strategy based on fuzzy logic, which is employed to control the power flow of the vehicular power train, is described. This strategy is capable of determining the desired output power of the fuel cell system, battery and ultracapacitor according to the propulsion power and recuperated braking power. Some tests to verify the strategy were developed, and the results of the tests show the effectiveness of the proposed energy management strategy and the good performance of the fuel cell hybrid bus.  相似文献   

14.
The energy management strategy (EMS) is a key to reduce the equivalent hydrogen consumption and slow down fuel cell performance degradation of the plug-in fuel cell hybrid electric vehicles. Global optimal EMS based on the whole trip information can achieve the minimum hydrogen consumption, but it is difficult to apply in real driving. This paper tries to solve this problem with a novel hierarchical EMS proposed to realize the real-time application and approximate global optimization. The long-term average speed in each future trip segment is predicted by KNN, and the short-term speed series is predicted by a new model averaging method. The approximate global optimization is realized by introducing hierarchical reinforcement learning (HRL), and the strategy within the speed forecast window is optimized by introducing upper confidence tree search (UCTS). The vehicle speed prediction and the proposed EMS have been verified using the collected real driving cycles. The results show that the proposed strategy can adapt to driving style changes through self-learning. Compared with the widely used rule-based strategy, it can evidently reduce hydrogen consumption by 6.14% and fuel cell start-stop times by 21.7% on average to suppress the aging of fuel cell. Moreover, its computation time is less than 0.447 s at each step, and combined with rolling optimization, it can be used for real-time application.  相似文献   

15.
In this paper, a hierarchical energy management strategy (EMS) based on low-pass filter and equivalent consumption minimization strategy (ECMS) is proposed in order to lift energy sources lifespan, power performance and fuel economy for hybrid electrical vehicles equipped with fuel cell, battery and supercapacitor. As for the considered powertrain configuration, fuel cell serves as main energy source, and battery and supercapacitor are regarded as energy support and storage system. Supercapacitor with high power density and dynamic response acts during great power fluctuations, which relives stress on fuel cell and battery. Meanwhile, battery is used to lift the economy of hydrogen fuel. In higher layer strategy of the proposed EMS, supercapacitor is employed to supply peak power and recycle braking energy by using the adaptive low-pass filter method. Meantime, an ECMS is designed to allocate power of fuel cell and battery such that fuel cell can work in a high efficient range to minimize hydrogen consumption in lower layer. The proposed EMS for hybrid electrical vehicles is modeled and verified by advisor-simulink and experiment bench. Simulation and experiment results are given to confirm effectiveness of the proposed EMS of this paper.  相似文献   

16.
The fuel cell plug in hybrid electric vehicle (FCPHEV) is a near-term realizable concept to commercialize hydrogen fuel cell vehicles (FCV). Relative to conventional FCVs, FCPHEVs seek to achieve fuel economy benefits through the displacement of hydrogen energy with grid-sourced electrical energy, and they may have less dependence on a sparse hydrogen fueling infrastructure. Through the simulation of almost 690,000 FCPHEV trips using geographic information system (GIS) data surveyed from a fleet of private vehicles in the Puget Sound area of Washington State, USA, this study derives the electrical and hydrogen energy consumption of various design and control variants of FCPHEVs. Results demonstrate that FCPHEVs can realize hydrogen fuel consumption reductions relative to conventional FCV technologies, and that the fuel consumption reductions increase with increased charge depleting range. In addition, this study quantifies the degree to which FCPHEVs are less dependent on hydrogen fueling infrastructure, as FCPHEVs can refuel with hydrogen at a lower rate than FCVs. Reductions in hydrogen refueling infrastructure dependence vary with control strategies and vehicle charge depleting range, but reductions in fleet-level refueling events of 93% can be realized for FCPHEVs with 40 miles (60 km) of charge depleting range. These fueling events occur on or near the network of highways at approximately 4% of the rate (refuelings per year) of that for conventional FCVs. These results demonstrate that FCPHEVs are a type of FCV that can enable an effective and concentrated hydrogen refueling network.  相似文献   

17.
An energy management strategy (EMS) is responsible for distributing the power between the electrochemical power sources of a fuel cell hybrid electric vehicle (FCHEV) with a view to minimizing the hydrogen consumption and maximizing the lifetime of the system. However, the energetic characteristics of the electrochemical devices (fuel cell, battery, and supercapacitor) are time-varying due to the influence of ageing, and different ambient and operating conditions. Any drift in the characteristics of the power sources can lead to the mismanagement of an EMS. According to the literature, ignorance of health adaptation can increase the hydrogen consumption from almost 6.5%–24% depending on the EMS. Therefore, it is necessary to develop a strategy which is aware of the actual state of the components while conducting the power split. Health monitoring techniques are potential candidates to deal with the uncertainties arising from the mentioned factors. In this respect, this paper first puts forward a concise review of the general modeling techniques which are essential for developing precise health monitoring techniques and in turn EMSs. Subsequently, the utilized methods for prognosis, diagnosis, and health state tracking of each of the mentioned power sources in a FCHEV are introduced. Then, a new taxonomy for the classification of the EMSs based on their health-awareness is proposed based on which three categories of prognostic-based, diagnostic-based, and systemic EMSs are formed. Each category is thoroughly explained, and a state-of-the-art review of these health-aware EMSs is presented. Finally, future perspectives of this new line of research and development are discussed before drawing a conclusion.  相似文献   

18.
The energy management of a plug-in FCEV (Fuel Cell Electric Vehicle) strictly depends on the control of SOC (State of Charge) over a given trip distance. The SOC may be varied with the trip distance by updating an EF (Equivalent Factor), which is derived from ECMS (Equivalent Consumption Minimization Strategy). However, the EF is too complicated to estimate accurately in real-time with traditional method. A real-time optimization strategy by using SQP (Sequence Quadratic Programming) with MNLR (Multivariate Nonlinear Regression) is proposed for a plug-in FCEV. First, the real-time hydrogen consumption optimization problem for SOC trip distance adaptive is formulated by using ECMS. The EF is adjusted according to the trip distances and predefined SOC. Then, in order to improve the accuracy of EF, SQP method is utilized to optimize the fuel cell and battery efficiency. Thus, the MNLR is applied to construct the fuel cell and battery efficiency response surface models for real-time optimization application. Finally, numerical verification and hardware in loop experiments are conducted to validate the proposed strategy. The results indicate that the combination of SQP with MNLR made it possible to develop the proposed strategy capable of significantly improving the hydrogen economic performance of this FCEV.  相似文献   

19.
Establishing a reasonable energy management strategy (EMS) is the key to improve the service durability, power performance and fuel economy of the fuel cell hybrid electric vehicle (FCHEV). This paper obtains energy distribution optimal solution for the fuel cell hybrid bus (FCHB) based on Pontryagin's minimum principle (PMP) algorithm, and the problems of inaccurate estimation of motor power and difficult real-time application are solved. Firstly, the driving feature recognition is completed by collecting the motor output power directly when the FCHB stops at the station. On the basis of it, the sub-optimal co-state value is chosen. Secondly, the sub-optimal co-state is used to complete the real-time application of PMP algorithm in the driving segment. The results are acquired through the simulation and the actual comparison experiment, compared with rule-based simulation and rule-based actual experiment, the hydrogen consumption of the proposed strategy decreases by 20.3% and 28.9% on average. Moreover, the online computation time per step of the proposed strategy is 3.64 ms averagely, less than sampling time interval 1s. It is shown that the proposed method has lower hydrogen consumption rate and excellent real-time performance.  相似文献   

20.
The two primary challenges preventing the commercialization of fuel cell hybrid electric vehicles (FCHEV) are their high cost and limited lifespan. Improper use usage can could also hasten the breakdown of proton exchange membrane fuel cell (PEMFC). This paper proposes a new cost-minimizing power-allocating technique with fuel cell/battery health-aware control to optimize the economic potential of fuel cell/battery hybrid buses. The proposed framework quantifies the fuel cell (FC) deterioration of the whole working zone in a real hybrid electric bus using a long short-term memory network (LSTM), which reduces the time required to get the key lifetime parameters. A new FC lifespan model is embedded into the control framework, together with a battery aging model, to balance hydrogen consumption and energy source durability. In addition, in the speed prediction step, an enhanced online Markov prediction approach with stochastic disturbances is presented to increase the forecast accuracy for future disturbances. Finally, comparative analysis is used to verify the efficacy of the suggested approach, which shows that when compared to the benchmark method, the proposed strategy may extend the FC lifetime and lower operating costs by 5.04% and 3.76%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号