首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the influence of interference fit coupling on the fatigue strength of holed plates made of a medium‐carbon forging steel (35 KB2), heat treated by quenching followed by tempering, up to a hardness of about 350 BH, obtaining a sorbitic microstructure. Tensile and impact tests showed an ultimate tensile strength of about 1100 MPa, a yield strength of about 1000 MPa, an elongation to failure of 15% and an impact toughness KV of 43 J at room temperature. Axial fatigue tests were performed on holed specimens with or without a pin, made of the same material, press fitted and still left into their central hole. The tension–tension fatigue tests have been performed with a stress ratio R = 0.1. The effect on fatigue strength was investigated both experimentally and numerically. Three different conditions were investigated by using open hole specimens, specimens with 0.6% of nominal specific interference and specimens with 2% of nominal specific interference. The experimental stress‐life (S–N) curves pointed out an increased fatigue life of the interference fit specimens, compared with the open hole ones. The numerical investigation was performed in order to analyse the stress field by applying an elastic plastic 2D simulation, with commercial finite element software. The stress history and distribution around the interference‐fitted hole indicate a significant reduction of the stress amplitude produced by the external loading (remote stress) because a residual and compressive stress field is generated by the pin insertion.  相似文献   

2.
Longitudinal strain ratcheting and stress relaxation in interference‐fitted single‐holed plates were investigated both experimentally and numerically. In the experimental part single‐holed plates made from Al‐alloy 7075‐T6 were force‐fitted with oversized pins to create 1% and 2% nominal interference fit sizes. Then these plates (specimens) were instrumented with dynamic strain gauges in longitudinal direction around the hole to measure the strain during interference fit and strain ratcheting during subsequent cyclic loading. In the numerical part, 2D finite element code has been written to simulate the interference fit process and subsequent cyclic loading to obtain strains and stresses around the force fitted hole. To predict the strain ratcheting, Ohno–Wang kinematic hardening model was applied for simulation of stress/strain path. The strain ratcheting predicted from the finite element code and experimental test results were compared. The results showed that there is a good agreement between the measured and numerically evaluated strains, and the strain ratcheting is bigger for higher cyclic load level, but it is smaller for larger interference size.  相似文献   

3.
In this research the effect of bolt interference fit on the fatigue life of lap joints in double shear was investigated by conducting experimental fatigue tests and also analytically by FE simulation. In the experimental part, fatigue tests were carried out on specimens made from aluminium alloy 2024-T3 plates joined together as double lap joints and secured using bolts having fits ranging from zero clearance to different levels of interference. The results demonstrate how the failure is affected using different levels of interference fit. In the numerical study, 3-D FE models were used to simulate the different pin in hole fits considered and the results have been used to help explain the trends which were observed in the experimentally obtained SN curve behaviour.  相似文献   

4.
The cold expansion of circular holes is known to improve resistance to fatigue. In this study the effect of the cold expansion of a circular hole on fatigue life by means of a quasi-elliptical pin was investigated. Additional evaluations were conducted, including determinations of the effects of crack propagation from the hole. The major life extension was obtained through slower crack growth in the short-crack stage. The decrease in fatigue crack growth in cold-expanded specimens was related to higher crack-opening stresses which are a consequence of the presence of compressive residual stresses arising from cold expansion. In this study, an experimental investigation was carried out to quantify the effect of the cold expansion on the initiation and the propagation of the fatigue crack and was discussed. Fatigue life improvement of the cold-worked hole specimen was explained by determining the hardness results around the cold-worked hole. The results indicate that significant life improvements can be obtained through cold expansion applied with a quasi-elliptical pin in this work with the optimum results being obtained when the pin diameter is 4% larger than the diameter of the specimen hole. Also, a brief examination of the effect of the rivet shape on the fatigue life of a riveted specimen was carried out. To lengthen the fatigue life of a riveted plate which uses countersunk head rivets, the shape of the countersink and the rivet head were improved. The experimental results showed that the fatigue life of the riveted plate was improved where the improved rivet was used.  相似文献   

5.
In this work laser‐welded tube‐tube specimens made of aluminium alloys AlMg3.5Mn and AlSi1MgMn T6 were experimentally tested under constant and variable amplitude loading, under pure axial and pure torsion loading. In order to evaluate the influence on fatigue behaviour of the residual stresses, because of the welding process, some specimens were subjected to postweld heat treatment and then were tested. The numerical analyses, using finite element (FE), were carried out to obtain a reliable estimation of the residual stress in the specimen. The numerical results were in a good agreement with experimental ones obtained by means of hole‐drilling method. Finally, the residual stress distribution was superimposed to stress distribution because of fatigue loads obtained by FE analyses applying local concept, to calculate the stresses in the crack initiation zone and to understand the different types of failure that occurred in as‐welded and relieved specimens.  相似文献   

6.
In this paper the fatigue behavior of double shear lap joints treated by different combinations of interference fit and bolt clamping have been investigated both experimentally and numerically. To do so, specimens made from aerospace structural material of aluminum alloy 2024-T3 plates were interference fitted at the sizes of 1.5% and 4.7% and torque tightened with 2 and 4 N m to be prepared for fatigue tests. Consequently, the joints were subjected to cyclic load at different levels to obtain fatigue life. Finite element (FE) analysis was also performed to find the stress and strain distributions and the results were used to help explain the trends observed in the experimentally obtained S–N data. The experimental tests showed that during the interference fit process a protruded region is created at around the hole in the exit plane due to directional material plastic flow as a consequence of the oversized bolt force fitting. This protruded region has a bigger height for the bigger interference fit size. The finite element results showed that the protruded region generally localizes the compressive effect of bolt clamping and reduces its capability in fatigue life enhancement, by relaxing the clamping force. The fatigue test results showed that a better fatigue life improvement was achieved by employing the combination of a smaller interference fit size and bigger clamping force.  相似文献   

7.
Abstract: In this paper, strain‐based fatigue life prediction method has been used to estimate the fatigue crack initiation life of spot‐welded joints of Mild Steel JSC270D and Ultra‐High Strength Steel JSC980Y. To do so, the joints were simulated using three‐dimensional finite‐element (FE) models, and then nonlinear FE analysis was performed to obtain the local stress and strain ranges and finally, the Morrow equation was applied to estimate the crack initiation lives. The results have been compared with those obtained from experimental crack growth morphology. In addition, the difference between fatigue limits for smooth specimens and spot‐welded joints for mentioned materials has been briefly discussed. It has been shown that mean stress values in the Ultra‐High Strength Steel can significantly decrease the fatigue limit of spot‐welded joint because even at very low load level the stresses exceed the yield point at the root of nugget of spot‐welded joint, while the amount of mean stress in the Mild Steel for the same load level is much less than that of Ultra‐High Strength Steel. The comparison between numerical results of fatigue crack initiation lives and experimental data provided good agreement between numerical predictions and crack growth morphology observations. The results also shows that in some cases, depending on the joint type, the life spent in the nucleation phase can be an important part of the final failure lifetime.  相似文献   

8.
A fatigue crack growth (FCG) model for specimens with well-characterized residual stress fields has been studied using experimental analysis and finite element (FE) modeling. The residual stress field was obtained using four point bending tests performed on 7050-T7451 aluminum alloy rectangular specimens and consecutively modeled using the FE method. The experimentally obtained residual stress fields were characterized using a digital image correlation technique and a slitting method, and a good agreement between the experimental residual stress fields and the stress field in the FE model was obtained. The FE FCG models were developed using a linear elastic model, a linear elastic model with crack closure and an elastic–plastic model with crack closure. The crack growth in the FE FCG model was predicted using Paris–Erdogan data obtained from the residual stress free samples, using the Harter T-method for interpolating between different baseline crack growth curves, and using the effective stress intensity factor range and stress ratio. The elastic–plastic model with crack closure effects provides results close to the experimental data for the FCG with positive applied stress ratios reproducing the FCG deceleration in the compressive zone of the residual stress field. However, in the case of a negative stress ratio all models with crack closure effects strongly underestimate the FCG rates, in which case a linear elastic model provides the best fit with the experimental data. The results demonstrate that the negative part of the stress cycle with a fully closed crack contributes to the driving force for the FCG and thus should be accounted for in the fatigue life estimates.  相似文献   

9.
The fatigue behavior of aluminum alloy 7050-T7451 single lap four-bolted joints was studied by high-frequency fatigue test and finite element (FE) methods. The fatigue test results showed that a better enhancement of fatigue life was achieved for the joints with high-locked bolts by employing the combinations of cold expansion, interference fit, and clamping force. The fractography revealed that fatigue cracks propagated tortuously; more fatigue micro-cliffs, tearing ridges, lamellar structure were observed, and fatigue striation spacing was simultaneously reduced. The evaluation of residual stress conducted by FE methods confirmed the experimental results and locations of fatigue crack initiation. The extension of fatigue lives can be attributed to the evolution of fatigue damage and effect of beneficial compressive residual stresses around the hole, resulting in the delay of crack initiation, crack deflection, and plasticity-induced crack closure.  相似文献   

10.
Analysis of the crack growth propagation process under mixed-mode loading   总被引:1,自引:0,他引:1  
In the present paper, a computational model for crack growth analysis under Mode I/II conditions is formulated. The focus is on two issues – crack path simulation and fatigue life estimation. The finite element method is used together with the maximum principal stress criterion and the crack growth rate equation based on the equivalent stress intensity factor. To determine the mixed-mode stress intensity factors, quarter-point (Q-P) singular finite elements are employed. For verification purposes, a plate with crack emanating from the edge of a hole is examined. The crack path of the plate made of 2024 T3 Al Alloy is investigated experimentally and simulated by using the finite element method with the maximum tangential stress criterion. Then, the validation of the procedure is illustrated by applying the numerical evaluation of the curvilinear crack propagation in the polymethyl methacrylate (PMMA) beam and the Arcan specimen made of Al Alloy for which experimental results are available in the literature. In order to estimate fatigue life up to failure of the plate with crack emanating from the edge of a hole, the polynomial expression is evaluated for the equivalent stress intensity factor using values of stress intensity factors obtained from the finite element analysis. Additionally, the fatigue life up to failure of the Arcan specimen is analyzed for different loading angles and compared with experimental data. Excellent correlations between the computed and experimental results are obtained.  相似文献   

11.
Fatigue tests were carried out on 2024‐T351, thickness 1.6 mm, central hole specimens containing pins installed with five different interference‐fit levels. Tests clearly demonstrated the beneficial effect of interference fit on fatigue resistance, up to the maximum value examined, 2.5%. A three‐dimensional (3D) finite‐element model was used in order to characterize the stress field around the hole. A large specimen, with a 40‐mm‐diameter hole filled with interference‐fit pin, was instrumented by strain gauges and statically tested in order to check FEM results. A very good correlation existed between measured and numerically evaluated strains. FEM results demonstrated the well‐known effect of interference‐fit fasteners on reducing stress ranges. By increasing the interference level, the stress range was practically unchanged, while the mean stress decreased. Interference‐fit produces a biaxial stress state, which must be taken into account for fatigue evaluation. In the present case, a simple criterion, based on hoop strain, predicted the fatigue results quite well with the exception of open hole fatigue test results, which were overestimated.  相似文献   

12.
A paste comprising fine alumina particles was applied on surfaces of steel plate specimens and a welded joint specimen, and the effects of the paste on restraint and visual detection of fatigue crack growth were experimentally investigated by performing fatigue tests with in situ observations by a c harge c oupled d evice (CCD) microscope and through various kinds of fractographic observations and elemental analyses using an scanning electron microscope (SEM) and an electron probe microanalyser (EPMA). As a result, the crack growth rate in the plate specimen was drastically retarded by the wedge effect of the alumina particles, and a 311% increase in failure life was produced on an average. The restraint of crack opening displacement (COD) value by the wedge materials was estimated by elastic finite element (FE) analyses, and the results were compared with the experimental data. Similar crack growth restraint effects were also observed on the welded joint specimen, producing a 117% increase in failure life. In the fatigue tests of the specimens on which the alumina paste was applied, a remarkable black colour developed in the white alumina paste along the paths of crack propagation, facilitating the visual detection of the cracks. An analysis using an X‐ray diffractometer showed that the black matter in the paste consists of fine debris derived from the base metal.  相似文献   

13.
In this research the affect that lubrication at a hole and pin connection has on the fatigue life of a double shear lap joint is studied both experimentally and numerically. The study focuses on the joint middle plate item, which is connected via a central hole to the outer plates by means of a clearance fitting pin, thereby placing the hole in double shear. In the experimental work three identical batches of fatigue specimens, which are made from aluminum alloy 2024-T3, were fatigue tested. In the first batch the surface of the fastener hole was not lubricated whilst the hole in the other two batches was lubricated – each batch using a different lubricant. The three batches of double shear lap joint specimens were fatigue tested and their SN curves established. The results show that the specimens in which the holes were lubricated have better fatigue lives than the non-lubricated hole specimens. In the numerical study, FE simulations were performed to include hole lubrication effect on the stress distribution by using different friction coefficient at the interface of the hole and its fastener (pin). The FE results have helped to gain an understanding of the reasons for fatigue life improvement and also have helped to quantify the level of improvement.  相似文献   

14.
The fatigue life of 7075‐T6 aluminium specimens with countersunk fastener holes with cold expansion and interference‐fit fasteners with short edge margins was studied. The study was performed experimentally and through finite element analysis. The experiments measured the total fatigue life and crack growth. The results from the finite element analysis consisted of tangential residual stress profiles, which were combined with applied cyclic stresses for fatigue analysis. The experiments showed that the fatigue life improved with interference‐fit fasteners and cold expansion at all edge margins. The fatigue life also increased with increasing edge margin. The finite element results were used to make fatigue life predictions that corresponded reasonably well with the experimental results.  相似文献   

15.
F. Yin  A. Fatemi 《Strain》2011,47(Z1):e74-e83
Abstract: Monotonic and cyclic deformations of case‐hardened steel specimens under axial loading were investigated experimentally and analytically. A finite element (FE) model for the case‐hardened specimens was constructed to study multiaxial stresses due to different plastic flow behaviour between the case and the core, as well as to evaluate residual stress relaxation and redistribution subsequent to cyclic loading. The multiaxial stress is shown to increase the effective stress on the surface, and, therefore, unfavourable to yielding or fatigue crack nucleation. The residual stresses are shown to relax or redistribute, even in the elastic‐behaving region, when any part of a case‐hardened specimen or component undergoes plastic deformation. Multi‐layer models were used to analyse and predict monotonic and cyclic deformation behaviours of the case‐hardened specimen based on the core and case material properties, and the results are compared with the experimental as well as FE model results. The predicted monotonic stress–strain curves were close to the experimental curves, but the predicted cyclic stress–strain curves were higher than the experimental curves.  相似文献   

16.
Different degrees of cold working (ranging from 0% to 5.58%) were applied to the hole of plate specimens of 7475-T7351 aluminium alloy. These specimens were then subjected to cyclic loading. In each test, the crack initiation was detected and subsequently the crack length was monitored, using a video camera system. The experimental results were analysed in order to determine the cold working effect on the fatigue initiation period, on the propagation life and finally on the overall fatigue life. It was found, for example, that the propagation life improvement factor for a degree of cold working of 5.58% is about 43.0 and 4.9 for applied nominal stresses of 191 and 300 MPa, respectively. For the same conditions, the fatigue life improvement factor is about 3.2 and 1.5. A numerical analysis was also performed, using three-dimensional finite element method to establish the stress and strain distributions resulting from the superposition of the cold working process and the fatigue loading. Then, the results were used in connection with the non-cold worked hole data for calculating the cold worked plate initiation period according to the strain-life concept; for determining the propagation life, the weight function technique was applied. The predictions are very close to the experimental results.  相似文献   

17.
This paper presents the results of experimental and numerical investigation on fatigue of thin 304 stainless steel tensile specimens. In order to achieve the experimental aspects of this investigation a Micro Fatigue Test Rig (MFTR) was designed and developed to evaluate fatigue life and failure mechanism of tensile specimen. A 3D finite element model was also developed to investigate the fatigue damage of thin tensile specimen and to account for the effects of topological randomness of material microstructure on fatigue lives. The topology of the material grain structure was modeled using randomly generated 3D Voronoi tessellations corresponding to the measured grain size. Continuum damage mechanics was used to model the progressive material degradation. The damage parameters were obtained from the experimentally obtained SN curve. A 3D mesh partitioning procedure was developed to consider both crack initiation and propagation stages considering the predominant transgranular, non-planar crack growth observed in the experiments. The stress–life results obtained from the fatigue damage model are in good agreement with the experimental data. The progression of damage and the proportion of life spent in crack initiation obtained from the model are consistent with empirical observations. The fatigue damage model was used to assess the influence of microstructure randomness accompanied by material inhomogeneity and internal voids on fatigue life dispersion.  相似文献   

18.
The mechanism of mixed‐mode fatigue crack propagation was investigated in pure aluminum. Push‐pull fatigue tests were performed using two types of specimens. One was a round bar specimen having a blind hole, one was a plate specimen having a slit. The slit direction cut in the specimen was perpendicular or inclined 45 degrees relative to the centre of the specimen axis. In both cases, cracks propagated by mode I or by the mixed mode combining mode I and shear mode, depending on the testing conditions. In these cases the crack propagation rate was evaluated with a modified effective stress intensity factor range. Crack propagation retardation was observed in some specimens. However, it was found that the crack propagation rate could also be evaluated by the effective stress intensity factor range independent of the crack propagation mode.  相似文献   

19.
Cold expansion of fastener holes creates compressive residual stresses around the hole. This well‐known technique improves fatigue life by reducing tensile stress around the holes. However, cyclic loading causes these compressive residual stresses to relax, thus reducing their beneficial effect. Estimation of the fatigue life without considering the residual stress relaxation might lead to inaccurate results. In this research, numerical studies were carried out using 2D finite element (FE) models to determine the initial tangential and radial residual stress distributions generated by cold expansion and their relaxation under cyclic loading. To predict the stress relaxation, four nonlinear kinematic hardening models were applied in simulation of stress/strain path. The results obtained from the FE analysis were compared with available experimental results. A good agreement between the numerical and experimental results was observed.  相似文献   

20.
In order to investigate the effects of stress concentration on low cycle fatigue properties and fracture behaviour of a nickel‐based powder metallurgy superalloy, FGH97, at elevated temperature, the low cycle fatigue tests have been conducted with semi‐circular and semi‐elliptical single‐edge notched plate specimens at 550 and 700 °C. The results show that the fatigue life of the notched specimen decreases with the increase of stress concentration factor and the fatigue crack initiation life evidently decreases because of the defect located in the stress concentration zone. Moreover, the plastic deformation induced by notch stress concentration affects the initial crack occurrence zone. The angle α of the crack occurrence zone is within ±10° of notch bisector for semi‐circular notched specimens and ±20° for semi‐elliptical notched specimens. The crack propagation rate decreases to a minimum at a certain length, D, and then increases with the growth of the crack. The crack propagation rate of the semi‐elliptical notched specimen decelerates at a faster rate than that of the semi‐circular notched specimen because of the increase of the notch plasticity gradient. The crack length, D, is affected by both the applied load and the notch plasticity gradient. In addition, the fracture mechanism is shown to transition from transgranular to intergranular as temperature increases from 550 to 700 °C, which would accelerate crack propagation and reduce the fatigue life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号