首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combined cycle power plants (CCPPs) have an important role in power generation. The objective of this paper is to evaluate irreversibility of each part of Neka CCPP using the exergy analysis. The results show that the combustion chamber, gas turbine, duct burner and heat recovery steam generator (HRSG) are the main sources of irreversibility representing more than 83% of the overall exergy losses. The results show that the greatest exergy loss in the gas turbine occurs in the combustion chamber due to its high irreversibility. As the second major exergy loss is in HRSG, the optimization of HRSG has an important role in reducing the exergy loss of total combined cycle. In this case, LP‐SH has the worst heat transfer process. The first law efficiency and the exergy efficiency of CCPP are calculated. Thermal and exergy efficiencies of Neka CCPP are 47 and 45.5% without duct burner, respectively. The results show that if the duct burner is added to HRSG, these efficiencies are reduced to 46 and 44%. Nevertheless, the results show that the CCPP output power increases by 7.38% when the duct burner is used. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Many F class gas turbine combined cycle(GTCC)power plants are built in China at present because of less emis-sion and high efficiency.It is of great interest to investigate the efficiency improvement of GTCC plant.A com-bined cycle with three-pressure reheat heat recovery steam generator(HRSG)is selected for study in this paper.In order to maximize the GTCC efficiency,the optimization of the HRSG operating parameters is performed.Theoperating parameters are determined by means of a thermodynamic analysis,i.e.the minimization of exergylosses.The influence of HRSG inlet gas temperature on the steam bottoming cycle efficiency is discussed.Theresult shows that increasing the HRSG inlet temperature has less improvement to steam cycle efficiency when itis over 590℃.Partial gas to gas recuperation in the topping cycle is studied.Joining HRSG optimization with theuse of gas to gas heat recuperation,the combined plant efficiency can rise up to 59.05% at base load.In addition,the part load performance of the GTCC power plant gets much better.The efficiency is increased by 2.11% at75% load and by 4.17% at 50% load.  相似文献   

3.
The paper deals with the problems of hydrogen combustion in an oxygen environment to produce high-temperature steam to be used in electricity generation at various power stations including nuclear power plants (NPP). For example, the use of H2/O2 steam generator within a hydrogen energy complex may allow increasing the NPP power and efficiency under operating conditions due to hydrogen steam superheating of the main working fluid in a steam-turbine unit. In addition, the use of the hydrogen energy complex may allow adapting NPP to variable electric load schedules with the increasing share of such power stations as well as developing environmentally friendly technologies for electricity generation. In the paper, a new solution to the problem of the effective and safe use of hydrogen energy at NPP with a hydrogen energy complex has been proposed.Technical solutions to hydrogen combustion in an oxygen environment using direct injection of cooling water or water steam into combustion products may have a significant weakness, namely the “quenching” phenomenon occurring during water/water steam injection resulting in the recombination efficiency decrease during the cooling of combustion products which is reflected in the increased proportion of non-condensable gases. In this case, the supply of such mixture to the steam-power cycle may be unsafe, as it could result in the increased concentration of unburned hydrogen in the steam turbine flow path. In the paper, a closed hydrogen cycle along with the hydrogen steam superheating system on its basis has been proposed to solve this problem. The closed-circuit system of hydrogen combustion preventing hydrogen permeation into the working fluid of a steam cycle completely as well as ensuring its full oxidation due to some excess of circulating oxygen has been investigated by the authors.Two types of H2/O2 combustion chambers for the system of safe hydrogen steam superheating in NPP cycle by using the closed-circuit system of hydrogen combustion in an oxygen environment have been considered in the study. The required parameters of H2/O2 steam generator with regard to operating temperature conditions as well as the power range of H2/O2 steam generators with the proposed combustion chamber construction design have been determined by mathematical modeling of the combustion and heat-mass-exchange processes.  相似文献   

4.
Optimization is an important method for improving the efficiency and power of the combined cycle. In this paper, the triple‐pressure steam‐reheat gas‐reheat gas‐recuperated combined cycle that uses steam for cooling the first gas turbine (the regular steam‐cooled cycle) was optimized relative to its operating parameters. The optimized cycle generates more power and consumes more fuel than the regular steam‐cooled cycle. An objective function of the net additional revenue (the saving of the optimization process) was defined in terms of the revenue of the additional generated power and the costs of replacing the heat recovery steam generator (HRSG) and the costs of the additional operation and maintenance, installation, and fuel. Constraints were set on many operating parameters such as air compression ratio, the minimum temperature difference for pinch points (δTppm), the dryness fraction at steam turbine outlet, and stack temperature. The net additional revenue and cycle efficiency were optimized at 11 different maximum values of turbine inlet temperature (TIT) using two different methods: the direct search and the variable metric. The optima were found at the boundaries of many constraints such as the maximum values of air compression ratio, turbine outlet temperature (TOT), and the minimum value of stack temperature. The performance of the optimized cycles was compared with that for the regular steam‐cooled cycle. The results indicate that the optimized cycles are 1.7–1.8 percentage points higher in efficiency and 4.4–7.1% higher in total specific work than the regular steam‐cooled cycle when all cycles are compared at the same values of TIT and δTppm. Optimizing the net additional revenue could result in an annual saving of 21 million U.S. dollars for a 439 MW power plant. Increasing the maximum TOT to 1000°C and replacing the stainless steel recuperator heat exchanger of the optimized cycle with a super‐alloys‐recuperated heat exchanger could result in an additional efficiency increase of 1.1 percentage point and a specific work increase of 4.8–7.1%. The optimized cycles were about 3.3 percentage points higher in efficiency than the most efficient commercially available H‐system combined cycle when compared at the same value of TIT. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Thermal efficiency of a combined cycle power plant depends strongly on a heat recovery steam generator (HRSG), which is the link between the gas turbine‐based topping cycle and steam turbine‐based bottoming cycle. This work is based upon the design of physical parameters of a HRSG. In this article, the physical parameters of a HRSG have been considered to study their implications on HRSG design by comparing the existing plant design with an optimized plant design. Thermodynamic analysis of HRSG for the two designs gives important outcomes which are useful for power plant designers. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21106  相似文献   

6.
Although biodiesels have low emission profiles, the main drawback of using biodiesel in diesel engines is higher NOx. Nowadays, the electronic controlled steam injection is a promising method for NOx control. This study investigates the effects of steam injection with diesel fuel-canola oil methyl ester (COME) blends on the performance and emissions characteristics of a direct injection (DI) single cylinder diesel engine. Steam is injected into the inlet manifold during inlet period. The combustion of diesel-COME blends has been modeled using two zone combustion model. The results have been compared with each other in terms of performance and emissions. The maximum increments in engine torque and power were measured as 2.5% for 10% COME (B10) at 1200 rpm, 2.8% for 20% COME (B20) at 2200 rpm. The effects of steam injection on performance and emissions of the diesel engine running with B10 and B20 COME blends were also investigated. Satisfaction improvements have been obtained with the combination of steam injection and COME blends. The maximum torque of the engine running with B10 and 10% steam ratio combination (B10 + S10) and B20 and 10% steam ratio combinations (B20 + S10) were found as 2.4% at 1400 rpm and 0.6% at 1400 rpm, respectively. Significant reduction has been observed in NOx emission with B10-S10 combination. The reduction rate in NOx emissions were 22% with B10-S10 and 18% with B20-S10 at 1200 rpm. The study showed that steam injection is an effective tool for controlling NOx emissions without performance degradation in the diesel engines fueled with COME blends.  相似文献   

7.
The main methods for improving the efficiency of the combined cycle are: increasing the inlet temperature of the gas turbine (TIT), reducing the irreversibility of the heat recovery steam generator (HRSG), and optimization. In this paper, modeling and optimization of the triple-pressure reheat combined cycle as well as irreversibility reduction of its HRSG are considered. Constraints were set on the minimum temperature difference for pinch points (PPm), the temperature difference for superheat approach, the steam turbine inlet temperature and pressure, the stack temperature, and the dryness fraction at steam turbine outlet. The triple-pressure reheat combined cycle was optimized at 41 different maximum values of TIT using two different methods; the direct search and the variable metric. A feasible technique to reduce the irreversibility of the HRSG of the combined cycle was introduced. The optimized and the reduced-irreversibility triple-pressure reheat combined cycles were compared with the regularly designed triple-pressure reheat combined cycle, which is the typical design for a commercial combined cycle. The effects of varying the TIT on the performance of all cycles were presented and discussed. The results indicate that the optimized triple-pressure reheat combined cycle is up to 1.7% higher in efficiency than the reduced-irreversibility triple-pressure reheat combined cycle, which is 1.9–2.1% higher in efficiency than the regularly designed triple-pressure reheat combined cycle when all cycles are compared at the same values of TIT and PPm. The optimized and reduced-irreversibility combined cycles were compared with the most efficient commercially available combined cycle at the same value of TIT.  相似文献   

8.
The effect of elevated inlet air temperature and relative humidity on a gas turbine (GT) cogeneration system performance was investigated. The analysis was carried out on a GT of a capacity 171 MW at ISO condition, which is integrated with a dual pressure heat recovery steam generator (HRSG), the cogeneration system had been tested under Kuwait summer climate conditions. A computational model was developed and solved using engineering equation solver professional package to investigate the performance of a dual pressure GT‐HRSG system. The suggested HRSG is capable of producing high‐pressure superheated steam at 150 bar and 510°C to operate a power generation steam turbine cycle, and a medium pressure saturated steam at 15 bar to run a thermal vapor compression (TVC) desalination system. In this research, the influence of elevated inlet air temperature and relative humidity on the energy assessment of the suggested cogeneration system was thoroughly investigated. Results indicated that operating GT under elevated values of inlet air temperatures is characterized by low values of net power and thermal efficiency. At elevated inlet air temperatures, increasing relative humidity has a small positive impact on GT cycle net power and thermal efficiency. Integrating the GT with HRSG to generate steam for power generation and process heat tends to increase energy utilization factor of the system at elevated inlet air temperatures. Increasing inlet air temperature plays a negative impact on power to heat ratio (PHR), while relative humidity has no effect on PHR. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents exergy analysis of a conceptualized combined cogeneration plant that employs pressurized oxygen blown coal gasifier and high‐temperature, high‐pressure solid oxide fuel cell (SOFC) in the topping cycle and a bottoming steam cogeneration cycle. Useful heat is supplied by the pass‐out steam from the steam turbine and also by the steam raised separately in an evaporator placed in the heat recovery steam generator (HRSG). Exergy analysis shows that major part of plant exergy destruction takes place in gasifier and SOFC while considerable losses are also attributed to gas cooler, combustion chamber and HRSG. Exergy losses are found to decrease with increasing pressure ratio across the gas turbine for all of these components except the gas cooler. The fuel cell operating temperature influences the performance of the equipment placed downstream of SOFC. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Detailed thermodynamic, kinetic, geometric, and cost models are developed, implemented, and validated for the synthesis/design and operational analysis of hybrid SOFC–gas turbine–steam turbine systems ranging in size from 1.5 to 10 MWe. The fuel cell model used in this research work is based on a tubular Siemens-Westinghouse-type SOFC, which is integrated with a gas turbine and a heat recovery steam generator (HRSG) integrated in turn with a steam turbine cycle. The current work considers the possible benefits of using the exhaust gases in a HRSG in order to produce steam which drives a steam turbine for additional power output. Four different steam turbine cycles are considered in this research work: a single-pressure, a dual-pressure, a triple pressure, and a triple pressure with reheat. The models have been developed to function both at design (full load) and off-design (partial load) conditions. In addition, different solid oxide fuel cell sizes are examined to assure a proper selection of SOFC size based on efficiency or cost. The thermoeconomic analysis includes cost functions developed specifically for the different system and component sizes (capacities) analyzed. A parametric study is used to determine the most viable system/component syntheses/designs based on maximizing total system efficiency or minimizing total system life cycle cost.  相似文献   

11.
Located in the south of Iran, Jiroft Paper Mill Company requires an integrated combined heat and power plant, which can provide 50 MW of electric power and 100 ton h?1 saturated steam at 13 bar, to produce paper from an adjacent eucalyptus forest. The plant is composed of an air compressor, combustion chamber, air preheater, turbine, as well as a heat recovery steam generator. The design parameters of the plant were chosen as: compressor pressure ratio (rc), compressor isentropic efficiency (ηAC), gas turbine isentropic efficiency (ηT), combustion chamber inlet temperature (T3), and turbine inlet temperature (T4). In order to optimally find the design parameters a thermoeconomic approach has been followed. An objective function representing the total cost of the plant in terms of dollar per second was defined as the sum of the operating cost related to the fuel consumption and the capital investment for equipment purchase and maintenance costs. Subsequently, different parts of the objective function have been expressed in terms of decision variables. Finally, the optimal values of decision variables were obtained by minimizing the objective function using sequential quadratic programming. The influence of changes in the demanded power and steam on the design parameters has also been studied for 40, 50, 60, and 70 MW of net power output, and 100, 120, and 150 ton h?1 of saturated steam mass flow rate. Finally, the sensitivity analysis of change in design parameters with change in fuel or investment cost was performed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Increasing the inlet temperature of gas turbine (TIT) and optimization are important methods for improving the efficiency and power of the combined cycle. In this paper, the triple‐pressure steam‐reheat gas‐reheat recuperated combined cycle (the Regular Gas‐Reheat cycle) was optimized relative to its operating parameters, including the temperature differences for pinch points (δTPP). The optimized triple‐pressure steam‐reheat gas‐reheat recuperated combined cycle (the Optimized cycle) had much lower δTPP than that for the Regular Gas‐Reheat cycle so that the area of heat transfer of the heat recovery steam generator (HRSG) of the Optimized cycle had to be increased to keep the same rate of heat transfer. For the same mass flow rate of air, the Optimized cycle generates more power and consumes more fuel than the Regular Gas‐Reheat cycle. An objective function of the net additional revenue (the saving of the optimization process) was defined in terms of the revenue of the additional generated power and the costs of replacing the HRSG and the additional fuel. Constraints were set on many operating parameters such as the minimum temperature difference for pinch points (δTPPm), the steam turbines inlet temperatures and pressures, and the dryness fraction at steam turbine outlet. The net additional revenue was optimized at 11 different maximum values of TIT using two different methods: the direct search and variable metric. The performance of the Optimized cycle was compared with that for the Regular Gas‐Reheat cycle and the triple‐pressure steam‐reheat gas‐reheat recuperated reduced‐irreversibility combined cycle (the Reduced‐Irreversibility cycle). The results indicate that the Optimized cycle is 0.17–0.35 percentage point higher in efficiency and 5.3–6.8% higher in specific work than the Reduced‐Irreversibility cycle, which is 2.84–2.91 percentage points higher in efficiency and 4.7% higher in specific work than the Regular Gas‐Reheat cycle when all cycles are compared at the same values of TIT and δTPPm. Optimizing the net additional revenue could result in an annual saving of 33.7 million US dollars for a 481 MW power plant. The Optimized cycle was 3.62 percentage points higher in efficiency than the most efficient commercially available H‐system combined cycle when compared at the same value of TIT. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
A.M. Bassily   《Applied Energy》2008,85(12):1141-1162
The main methods for improving the efficiency or power of the combined cycle are: increasing the inlet temperature of the gas turbine (TIT), inlet air-cooling, applying gas reheat, steam or water injection into the gas turbine (GT), and reducing the irreversibility of the heat recovery steam generator (HRSG). In this paper, gas reheat with recuperation was applied to the regular triple-pressure steam-reheat combined cycle (the Regular cycle) by replacing the GT unit with a recuperated gas-reheat GT unit (requires two gas turbines, gas recuperator, and two combustion chambers). The Regular cycle with gas-reheat and gas-recuperation (the Regular Gas Reheat cycle) was modeled including detailed modeling of the combustion and GT cooling processes and a feasible technique to reduce the irreversibility of its HRSG was introduced. The Regular Gas Reheat cycle and the Regular Gas Reheat cycle with reduced-irreversibility HRSG (the Reduced Irreversibility cycle) were compared with the Regular cycle, which is the typical design for a commercial combined cycle. The effects of varying the TIT on the performances of all cycles were presented and discussed. The results indicate that the Reduced Irreversibility cycle is 1.9–2.15 percentage points higher in efficiency and 3.5% higher in the total specific work than the Regular Gas Reheat cycle, which is 3.3–3.6 percentage points higher in efficiency and 22–26% higher in the total specific work than the Regular cycle. The Regular Gas Reheat and Reduced Irreversibility cycles are 1.18 and 3.16 percentage points; respectively, higher in efficiency than the most efficient commercially-available combined cycle at the same value of TIT. Economic analysis was performed and showed that applying gas reheat with recuperation to the Regular cycle could result in an annual saving of 10.2 to 11.2 million US dollars for a 339 MW to 348 MW generating unit using the Regular cycle and that reducing the irreversibility of the HRSG of the Regular Gas Reheat cycle could result in an additional annual saving of 11.8 million US dollars for a 439 MW generating unit using the Regular Gas Reheat cycle.  相似文献   

14.
This study involves the design of a single flash cycle which comprises a separator, steam turbine, condenser and pump combined with Organic Rankine Cycle (ORC). The ORC has a three-stage heat exchanger. The mass flow rate of the organic fluid varies depending on the type of organic fluid. The system is heated by geothermal water. The effect of changing the geothermal water temperature [200–260°C] on performance parameters including the power output and overall efficiency has been studied. Four working fluids (n-Butane, Isobutane, R11 and R123) were chosen depending on their properties. The results show that a drop in the source temperature (T1) by 10% will result in 9.7% and 25.3% drop in overall efficiency and net power output for Isobutane. Also, Isobutane has a drop of 4.2% in both; overall efficiency and net power output for a 10% drop in pressure ratio (rp). R11 shows the highest overall efficiency and net power output (18.76% and 24.887 MW) respectively at the design point.  相似文献   

15.
Based on experimental data, typical off-design characteristic curves with corresponding formulas of internal combustion engine (ICE) are summarized and investigated. In combination with analytical solution of single-pressure heat recovery steam generator (HRSG) and influence of ambient pressure on combined heat and power (CHP) system, off-design operation regularities of ICE cogeneration are analyzed. The approach temperature difference ΔT a, relative steam production and superheated steam temperature decrease with the decrease in engine load. The total energy efficiency, equivalent exergy efficiency and economic exergy efficiency first increase and then decrease. Therefore, there exists an optimum value, corresponding to ICE best efficiency operating condition. It is worth emphasizing that ΔT a is likely to be negative in low load condition with high design steam parameter and low ICE design exhaust gas temperature. Compared with single shaft gas turbine cogeneration, ΔT a in ICE cogeneration is more likely to be negative. The main reason for this is that the gas turbine has an increased exhaust gas flow with the decrease in load; while ICE is on the contrary. Moreover, ICE power output and efficiency decrease with the decrease in ambient pressure. Hence, approach temperature difference, relative steam production and superheated steam temperature decrease rapidly while the cogeneration efficiencies decrease slightly. It is necessary to consider the influence of ambient conditions, especially the optimization of ICE performances at different places, on cogeneration performances.  相似文献   

16.
The combination of steam reforming and HT-PEMFC has been considered as a proper set up for the efficient hydrogen production. Recycling anode off-gas is energy-saving strategy, which leads to enhance the overall efficiency of the HT-PEMFC. Thus, the recycling effect of anode off-gas on steam-reforming performance needs to be further studied. This paper, therefore, investigated that the combustion of anode off-gas recycled impacts on the steam reformer, which consists of premixed-flame burner, steam reforming and water-gas shift reactors. The temperature rising of internal catalyst was affected by lower heating value of fuels when the distance between catalyst and burner is relatively short, while by the flow rate of fuels and the steam to carbon ratio when its distance is long. The concentration of carbon monoxide was the lowest at 180 °C of LTS temperature, while NG and AOG modes showed the highest thermal efficiency at LTS temperature of 220–300 °C and 270–350 °C, respectively. The optimum condition of thermal efficiency to maximize hydrogen production was determined by steam reforming rather than water gas shift reaction. It was confirmed that the condition to obtain the highest thermal efficiency is about 650 °C of steam reforming temperature, regardless of combustion fuel and carbon monoxide reduction. The difference of hydrogen yield between upper and lower values is up to 1.5 kW as electric energy with a variation of thermal efficiency. Hydrogen yield showed the linear proportion to the thermal efficiency of steam reformer, which needs to be further increased through proper thermal management.  相似文献   

17.
Thermal efficiency of Combined Cycle Power Plants (CCPPs) depends strongly on the Heat Recovery Steam Generation (HRSG) design which links the gas cycle with the steam cycle. Therefore, the HRSG must be carefully designed in order to maximize the heat exchanged and to improve the overall performance of the plant.In this paper, a mixed integer non-linear programming (MINLP) model to simultaneously optimize the equipment arrangement, geometric design and operating conditions of CCPPs is proposed. General Algebraic Modelling System (GAMS) is used to implement and to solve the mathematical model. The HRSG model involves discrete decisions connected with the geometric design and the selection of tube diameters as well as the length and width of each solid fin. Continuous variables are used to model the operating conditions of the HRSG and steam turbines (ST). The solution strategy for the resulting model comprises two phases: the first one focuses the process optimization but considering only global energy and mass balances and this phase provides initial-bounds values for the second phase where the complete and rigorous model involving discrete decisions is solved. Different case studies with increasing complexity have been successfully solved. Model validation and results obtained from the MINLP model by considering different objective functions are discussed.  相似文献   

18.
T. Srinivas   《Energy》2009,34(9):1364-1371
Deaerator is an essential open feed water heater in the steam bottoming cycle to improve the efficiency and also to remove the dissolved gasses from the feed water. Heat recovery steam generator (HRSG) plays a key role on the performance of the combined cycle (CC). In this work, attention has been focused to improve the performance of a triple pressure (TP) CC with a deaerator location. In this work, two options for deaerator location, one at condenser (deaerator–condenser) and the other in between low pressure (LP) and intermediate pressure (IP) heaters have been studied to increase the heat recovery from the gas turbine exhaust. The compressor pressure ratio is not fixed initially and evaluated from HRSG inlet condition. The LP and IP in HRSG have been evaluated from the local flue gas temperature to get the minimum possible temperature difference in the heaters. The results show that the deaerator placed in between the LP and IP heaters, gives high efficiency compared to a deaerator–condenser arrangement. The optimum conditions for the HRSG, deaerator and steam reheater are evaluated through the thermodynamic study. The results are validated by comparing with the published results.  相似文献   

19.
Starting from the first steam injection cycles (GE‐STIG; Cheng), the technique of increasing gas turbine performances by injecting water/steam somewhere before the combustion chamber, has shown very interesting results for power and efficiency increase and for NOx emissions. Very interesting performances are achieved by evaporative cycles, such as the HAT (Humid Air Turbine), which is capable of achieving 50% conversion efficiency with lower investment costs compared to combined cycles. Other advantages of the steam injected cycle include the power modulation that is possible by varying the injected steam flow rate, keeping the maximum temperature constant. In particular, for the HAT cycle, it is possible to choose different temperature, pressure and compositions for the blade cooling fluid, depending on the bleed point. In this paper, a second law analysis of the HAT cycle and its components, has been performed. In particular, the exergetic analysis of blade cooling has been carefully analysed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
Backfire is one of the major technical issues in a port injection type hydrogen fuelled spark ignition engine. It is an abnormal combustion phenomenon (pre-ignition) that takes place in combustion chamber and intake manifold during suction stroke. The flame propagates toward the upstream of the intake manifold from combustion chamber during backfire and thus can damage the intake and fuel supply systems of the engine, and stall the engine operation. The main cause of backfire could be the presence of any hot spot, lubricating oil particle's traces (HC and CO due to evaporation of the oil) and hot residual exhaust gas present in the combustion chamber during suction stroke which could act as an ignition source for fresh incoming charge. Monitoring the temperatures of the lubricating oil and exhaust gas during engine operation can reduce the probability of backfire. This was achieved by developing an electronic device which delays the injection timing of hydrogen fuel with the inputs of engine oil temperature (Tlube oil) and exhaust gas temperature (Texh). It was observed from the experimental results that the threshold values of Tlube oil and Texh were 85 °C and 540 °C respectively beyond which backfire occurred at equivalence ratio (φ) of 0.82. The developed device works based on the algorithm that retards the hydrogen injection to 40 0aTDC whenever the temperatures (Tlube oil and Texh) reached to the above mentioned values and thus the backfire was controlled. Delaying injection of hydrogen increased the time period at which only air is inducted during the early part of the suction stroke, this allows cooling of the available hot spots in the combustion chamber, hence the probability of backfire would be reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号