首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Given two non-negative integers h and k,an L(h,k)-labeling of a graph G=(V,E) is a function from the set V to a set of colors,such that adjacent nodes take colors at distance at least h,and nodes at distance 2 take colors at distance at least k.The aim of the L(h,k)-labeling problem is to minimize the greatest used color.Since the decisional version of this problem is NP-complete,it is important to investigate particular classes of graphs for which the problem can be efficiently solved.It is well known that the most common interconnection topologies,such as Butterfly-like,Bene(?),CCC,Trivalent Cayley networks,are all characterized by a similar structure:they have nodes organized as a matrix and connections are divided into layers.So we naturally introduce a new class of graphs,called (1×n)-multistage graphs,containing the most common interconnection topologies,on which we study the L(h,k)-labeling.A general algorithm for L(h,k)-labeling these graphs is presented,and from this method an efficient L(2,1)-labeling for Butterfly and CCC networks is derived.Finally we describe a possible generalization of our approach.  相似文献   

2.
A practical interconnection network RP(k) and its routing algorithms   总被引:8,自引:0,他引:8  
Based on Petersen graph, a new interconnection network, the RP(k) network, is devel-oped and the properties of the RP(k) network are investigated. The diameter of the RP(k) network is [ k/2] + 2 and its degree is 5. We prove that the diameter of the RP(k) network is much smaller than that of the 2-D Torus network when the number of nodes in interconnection networks is less than or equal to 300. In order to analyze the communication performance in a group of nodes, we propose the concepts of the optimal node groups and the diameter of the optimal node groups. We also show that the diameter of the optimal node groups in the RP(k) network is less than that in the 2-D Torus net-work. Especially when the number of nodes in an optimal node group is between 6 and 100, the diam-eter of the optimal node groups in the RP(k) network is half of that in the 2-D Torus network. Further-more based on the RP(k) network we design a set of routing algorithms which are point-to-point rout-ing, permutation routing, one-to-al  相似文献   

3.
Research on ad-hoc network connectivity has mainly focused on asymptotic results in the number of nodes in the network. For a one-dimensional ad-hoc network G1, assuming all the nodes are independently uniform distributed in a closed interval [0, Z](z ∈ R^+), we derive a generic formula for the probability that the network is connected. The finite connected ad-hoc networks is analyzed. And we separately suggest necessary conditions to make the ad-hoc network to be connected in one and two dimensional cases, facing possible failed nodes (f-nodes). Based on the necessary condition and unit-disk assumption for the node transmission, we prove that the nodes of the connected two-dimensional ad-hoc networks (G2) can be divided into at most five different groups. For an f-node no in either of the five groups, we derive a close formula for the probability that there is at least one route between a pair of nodes in G2 -- {no}.  相似文献   

4.
5.
One of the typical properties of biological systems is the law of conservation of mass, that is, the property that the mass must remain constant over time in a closed chemical reaction system. However, it is known that Boolean networks, which are a promising model of biological networks, do not always represent the conservation law. This paper thus addresses a kind of conservation law as a generic property of Boolean networks. In particular, we consider the problem of finding network structures on which, for any Boolean operation on nodes, the number of active nodes, i.e., nodes whose state is one, is constant over time. As a solution to the problem, we focus on the strongly-connected network structures and present a necessary and sufficient condition.  相似文献   

6.
For the problem of routing and wavelength assignment in Wavelength Division Multiplexing (WDM) optical transport network, an algorithm based on the state of links is proposed, which is named Tradeoff_LSDRAW, and which can select a path with the higher state level between a pair of nodes in a network. Finally, by an example network, we show that the algorithm has the stronger capability of selecting a better path between a pair of nodes, and can achieve the load balancing and reduce the congestion probability in WDM optical transport networks.  相似文献   

7.
Number estimation of controllers is a fundamental question in pinning synchronization of complex networks. This paper studies the problem of controller number in synchronizing a complex network of coupled dynamical systems by means of pinning. For a complex network with a symmetric coupling matrix and full coupling between the nodes, we formulate network synchronization via pinning as a linear matrix inequality criterion, and provide a lower bound and an upper bound of the controller number for a given complex network with fixed architecture. Several numerical examples with Barabási-Albert network topologies are provided to verify our theoretical results.  相似文献   

8.
The cross-layer resource allocation problem in wireless multi-hop networks (WMHNs) has been ex-tensively studied in the past few years. Most of these studies assume that every node has the perfect channel state information (CSI) of other nodes. In practical settings, however, the networks are generally dynamic and CSI usually becomes outdated when it is used, due to the time-variant channel and feedback delay. To deal with this issue, we study the cross-layer resource allocation problem in dynamic WMHNs with outdated CSI under channel conditions where there is correlation between the outdated CSI and current CSI. Two major contributions are made in this work: (1) a closed-form expression of conditional average capacity is derived under the signal-to-interference-plus-noise ratio (SINR) model; (2) a joint optimization problem of congestion control, power control, and channel allocation in the context of outdated CSI is formulated and solved in both centralized and distributed manners. Simulation results show that the network utility can be improved significantly using our proposed algorithm.  相似文献   

9.
The topology control strategies of wireless sensor networks are very important for reducing the energy consumption of sensor nodes and prolonging the life-span of networks. In this paper, we put forward a minimum-energy path-preserving topology control (MPTC) algorithm based on a concept of none k-redundant edges. MPTC not only resolves the problem of excessive energy consumption because of the unclosed region in small minimum-energy communication network (SMECN), but also preserves at least one minimum-energy path between every pair of nodes in a wireless sensor network. We also propose an energy-efficient reconfiguration protocol that maintains the minimum-energy path property in the case where the network topology changes dynamically. Finally, we demonstrate the performance improvements of our algorithm through simulation.  相似文献   

10.
This paper presents a novel method to study Linux kernel evolution using complex networks.Having investigated the node degree distribution and average path length of the call graphs corresponding to the kernel modules of 223 different versions(V1.1.0 to V2.4.35),we found that the call graphs are scale-free and smallworld networks.Based on the relationship between average path length and nodes,we propose a method to find unusual points during Linux kernel evolution using the slope of the average path length.Using the unusual points we identify major structural changes in kernel modules.A stability coefficient is also proposed to describe quantitatively the stability of kernel modules during evolution.Finally,we verify our result through Vasa’s metrics method.  相似文献   

11.
An L(2,1)-labeling of a graph G is a function f from the vertex set V(G) to the set of all nonnegative integers such that |f(x)−f(y)|≥2 if d(x,y)=1 and |f(x)−f(y)|≥1 if d(x,y)=2, where d(x,y) denotes the distance between x and y in G. The L(2,1)-labeling number λ(G) of G is the smallest number k such that G has an L(2,1)-labeling with max{f(v):vV(G)}=k. Griggs and Yeh conjecture that λ(G)≤Δ2 for any simple graph with maximum degree Δ≥2. This paper considers the graph formed by the skew product and the converse skew product of two graphs with a new approach on the analysis of adjacency matrices of the graphs as in [W.C. Shiu, Z. Shao, K.K. Poon, D. Zhang, A new approach to the L(2,1)-labeling of some products of graphs, IEEE Trans. Circuits Syst. II: Express Briefs (to appear)] and improves the previous upper bounds significantly.  相似文献   

12.
There is substantial literature dealing with fixed parameter algorithms for the dominating set problem on various families of graphs. In this paper, we give a k O(dk) n time algorithm for finding a dominating set of size at most k in a d-degenerated graph with n vertices. This proves that the dominating set problem is fixed-parameter tractable for degenerated graphs. For graphs that do not contain K h as a topological minor, we give an improved algorithm for the problem with running time (O(h)) hk n. For graphs which are K h -minor-free, the running time is further reduced to (O(log h)) hk/2 n. Fixed-parameter tractable algorithms that are linear in the number of vertices of the graph were previously known only for planar graphs. For the families of graphs discussed above, the problem of finding an induced cycle of a given length is also addressed. For every fixed H and k, we show that if an H-minor-free graph G with n vertices contains an induced cycle of size k, then such a cycle can be found in O(n) expected time as well as in O(nlog n) worst-case time. Some results are stated concerning the (im)possibility of establishing linear time algorithms for the more general family of degenerated graphs. A preliminary version of this paper appeared in the Proceedings of the 13th Annual International Computing and Combinatorics Conference (COCOON), Banff, Alberta, Canada (2007), pp. 394–405. N. Alon research supported in part by a grant from the Israel Science Foundation, and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University. This paper forms part of a Ph.D. thesis written by S. Gutner under the supervision of Prof. N. Alon and Prof. Y. Azar in Tel Aviv University.  相似文献   

13.
We show that several problems that are hard for various parameterized complexity classes on general graphs, become fixed parameter tractable on graphs with no small cycles. More specifically, we give fixed parameter tractable algorithms for Dominating Set, t -Vertex Cover (where we need to cover at least t edges) and several of their variants on graphs with girth at least five. These problems are known to be W[i]-hard for some i≥1 in general graphs. We also show that the Dominating Set problem is W[2]-hard for bipartite graphs and hence for triangle free graphs. In the case of Independent Set and several of its variants, we show these problems to be fixed parameter tractable even in triangle free graphs. In contrast, we show that the Dense Subgraph problem where one is interested in finding an induced subgraph on k vertices having at least l edges, parameterized by k, is W[1]-hard even on graphs with girth at least six. Finally, we give an O(log p) ratio approximation algorithm for the Dominating Set problem for graphs with girth at least 5, where p is the size of an optimum dominating set of the graph. This improves the previous O(log n) factor approximation algorithm for the problem, where n is the number of vertices of the input graph. A preliminary version of this paper appeared in the Proceedings of 10th Scandinavian Workshop on Algorithm Theory (SWAT), Lecture Notes in Computer Science, vol. 4059, pp. 304–315, 2006.  相似文献   

14.
L(h,1)-labeling, h=0,1,2, is a class of coloring problems arising from frequency assignment in radio networks, in which adjacent nodes must receive colors that are at least h apart while nodes connected by a two long path must receive different colors. This problem is NP-complete even when limited to planar graphs. Here, we focus on L(h,1)-labeling restricted to regular tilings of the plane and to outerplanar graphs. We give a unique parametric algorithm labeling each regular tiling of the plane. For these networks, a channel can be assigned to any node in constant time, provided that relative positions of the node in the network is locally known. Regarding outerplanar graphs with maximum degree Δ, we improve the best known upper bounds from Δ+9, Δ+5 and Δ+3 to Δ+3, Δ+1 and Δ colors for the values of h equal to 2, 1 and 0, respectively, for sufficiently large values of Δ. For h=0,1 this result proves the polinomiality of the problem for outerplanar graphs. Finally, we study the special case Δ=3, achieving surprising results.  相似文献   

15.
The notion of distance constrained graph labelings, motivated by the Frequency Assignment Problem, reads as follows: A mapping from the vertex set of a graph G=(V,E) into an interval of integers {0,…,k} is an L(2,1)-labeling of G of span k if any two adjacent vertices are mapped onto integers that are at least 2 apart, and every two vertices with a common neighbor are mapped onto distinct integers. It is known that for any fixed k≥4, deciding the existence of such a labeling is an NP-complete problem. We present exact exponential time algorithms that are faster than the naive O *((k+1) n ) algorithm that would try all possible mappings. The improvement is best seen in the first NP-complete case of k=4, where the running time of our algorithm is O(1.3006 n ). Furthermore we show that dynamic programming can be used to establish an O(3.8730 n ) algorithm to compute an optimal L(2,1)-labeling.  相似文献   

16.
17.
Given n points, called terminals, in the plane ℝ2 and a positive integer k, the bottleneck Steiner tree problem is to find k Steiner points from ℝ2 and a spanning tree on the n+k points that minimizes its longest edge length. Edge length is measured by an underlying distance function on ℝ2, usually, the Euclidean or the L 1 metric. This problem is known to be NP-hard. In this paper, we study this problem in the L p metric for any 1≤p≤∞, and aim to find an exact algorithm which is efficient for small fixed k. We present the first fixed-parameter tractable algorithm running in f(k)⋅nlog 2 n time for the L 1 and the L metrics, and the first exact algorithm for the L p metric for any fixed rational p with 1<p<∞ whose time complexity is f(k)⋅(n k +nlog n), where f(k) is a function dependent only on k. Note that prior to this paper there was no known exact algorithm even for the L 2 metric.  相似文献   

18.
We show efficient algorithms for edge-coloring planar graphs. Our main result is a linear-time algorithm for coloring planar graphs with maximum degree Δ with max {Δ,9} colors. Thus the coloring is optimal for graphs with maximum degree Δ≥9. Moreover for Δ=4,5,6 we give linear-time algorithms that use Δ+2 colors. These results improve over the algorithms of Chrobak and Yung (J. Algorithms 10:35–51, 1989) and of Chrobak and Nishizeki (J. Algorithms 11:102–116, 1990) which color planar graphs using max {Δ,19} colors in linear time or using max {Δ,9} colors in time. R. Cole supported in part by NSF grants CCR0105678 and CCF0515127 and IDM0414763. Ł. Kowalik supported in part by KBN grant 4T11C04425. Part of this work was done while Ł. Kowalik was staying at the Max Planck Institute in Saarbruecken, Germany.  相似文献   

19.
An f-sensitivity distance oracle for a weighted undirected graph G(V,E) is a data structure capable of answering restricted distance queries between vertex pairs, i.e., calculating distances on a subgraph avoiding some forbidden edges. This paper presents an efficiently constructible f-sensitivity distance oracle that given a triplet (s,t,F), where s and t are vertices and F is a set of forbidden edges such that |F|≤f, returns an estimate of the distance between s and t in G(V,EF). For an integer parameter k≥1, the size of the data structure is O(fkn 1+1/k log (nW)), where W is the heaviest edge in G, the stretch (approximation ratio) of the returned distance is (8k−2)(f+1), and the query time is O(|F|⋅log 2 n⋅log log n⋅log log d), where d is the distance between s and t in G(V,EF).  相似文献   

20.
We consider the following network design problem; Given a vertex set V with a metric cost c on V, an integer k≥1, and a degree specification b, find a minimum cost k-edge-connected multigraph on V under the constraint that the degree of each vertex vV is equal to b(v). This problem generalizes metric TSP. In this paper, we show that the problem admits a ρ-approximation algorithm if b(v)≥2, vV, where ρ=2.5 if k is even, and ρ=2.5+1.5/k if k is odd. We also prove that the digraph version of this problem admits a 2.5-approximation algorithm and discuss some generalization of metric TSP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号