首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
含氟弹性体对LLDPE熔体流变性能的影响   总被引:2,自引:0,他引:2  
通过改变含氟弹性体(PPA)的含量,研究了PPA对线型低密度聚乙烯(LLDPE)熔体流变行为的影响.研究发现,将PPA加入到LLDPE中,熔体的挤出压力、挤出胀大比均减小,发生鲨鱼皮畸变和挤出压力振荡等不稳定流动现象时的临界剪切速率提高,扩大了加工范围;足量的PPA甚至可完全消除鲨鱼皮畸变现象.  相似文献   

2.
吴其晔  李鹏  慕晶霞  张娜  王新 《塑料》2007,36(5):20-24
采用恒速型双毛细管流变仪研究一批聚烯烃熔体的高速挤出行为.定义了定量描述两类挤出畸变现象--鲨鱼皮畸变和挤出压力振荡的若干物理参数.定量描述了温度、挤出速率、熔体材质及成分对挤出压力振荡和鲨鱼皮畸变的影响规律.发现线型聚合物熔体高速挤出时易发生鲨鱼皮畸变和挤出压力振荡,而支化聚合物或主链含大侧基聚合物熔体很少出现同类畸变.挤出速率增大,压力振荡的频率加大,振荡加剧;挤出温度升高,开始发生振荡的临界剪切速率增高,熔体流动不稳定性减轻;但对同一熔体而言,不同温度下开始发生压力振荡的临界剪切应力变化不大.  相似文献   

3.
HDPE及其共混物的挤出压力振荡现象   总被引:4,自引:0,他引:4  
采用恒速型双毛细管流变仪研究高密度聚乙烯及其共混物的压力振荡现象,测量了压力振荡的振幅及频率,计算了熔体在管壁的滑移速率和临界外推滑移长度。结果表明,发生压力振荡时,熔体与毛细管壁的界面出现“时黏时滑”转变。黏界面时,挤出物表面出现“鲨鱼皮”现象;滑界面时,挤出物表面粗糙,类似于无规破裂。随剪切速率的增加,压力振荡的振幅减小,而滑移速率、临界外推滑移长度及振荡频率均有提高。升高挤出温度和采用共混改性都可抑制压力振荡现象。  相似文献   

4.
HDPE/OMMT纳米复合材料挤出胀大比的影响因素研究   总被引:2,自引:1,他引:1  
利用流变分析仪研究了高密度聚乙烯(HDPE)/有机蒙脱土(OMMT)纳米复合材料在挤出过程中的挤出胀大行为及其影响因素,深入讨论了剪切应力、剪切速率、口模温度、口模长径比及OMMT用量对HDPE/OMMT纳米复合材料挤出胀大比B的影响.结果表明,B值随着剪切应力或剪切速率的增加而增大,并且与剪切应力近似呈线性关系;随着口模温度的升高或长径比的增加而减小,当口模长径比较小时,B值受剪切应力或剪切速率的影响尤为显著;同时B值随OMMT用量的增加而逐渐减小.  相似文献   

5.
用双毛细管流变仪研究了线型低密度聚乙烯、低密度聚乙烯及其共混物在较宽速率范围内的流变行为,通过分析流场中应力集中效应与不稳定流动的关系,从而控制不稳定流动现象。结果表明:挤出物在口模入口处的应力集中占总压力的15%以上时,一般导致毛细管人口压力降的无规振荡及挤出物的整体无规则波动和破裂;整条毛细管上的挤出压力发生振荡,挤出物外观发生光滑段和粗糙段交替出现的有规畸变。  相似文献   

6.
LLDPE/LDPE共混熔体不稳定流动性的研究   总被引:3,自引:0,他引:3  
慕晶霞  赵贝  王宁  张娜  李鹏  吴其晔 《塑料》2007,36(1):56-61
采用恒速型双毛细管流变仪对比研究了LDPE/LLDPE不同组分含量共混物在较宽速率范围内的流变行为,通过研究共混物的黏度、弹性、挤出压力振荡、流动曲线、挤出畸变的差异,分析讨论了共混组成对黏弹性,进而对挤出压力振荡、鲨鱼皮等不稳定流动现象的影响。结果表明,共混使熔体的非线性黏性、弹性均增加,挤出畸变现象加重;少量LDPE的混入可消除LLDPE的挤出压力振荡现象,但鲨鱼皮畸变加重;而少量LLDPE的混入却不能消除LDPE熔体在毛细管入口处的压力振荡现象。  相似文献   

7.
为研究PFSA熔体的黏弹性和稳定流动区,通过旋转流变和毛细管流变仪分别研究了PFSA的动态流变性能和高速挤出过程的不稳定流动行为。结果表明:PFSA表现假塑性流体行为,复数黏度随着剪切速率的升高而下降,损耗因子(tanδ)随温度的升高而增加。在高速挤出过程中PFSA熔体在测试的速率范围内呈现稳定区、鲨鱼皮区,黏滑区和严重熔体破裂四个流动阶段。温度升高出现熔体破裂的临界剪切速率升高,且熔体的交换容量越低,出现熔体破裂的临界剪切速率和临界剪切应力越低。  相似文献   

8.
概述了聚合物熔体在毛细管挤出中典型的不稳定流动现象和不稳定流动的分类,分别叙述了支化聚乙烯型熔体破裂和线型聚乙烯型鲨鱼皮破裂,粘-滑破裂,波动破裂,以及其它异常流动行为的理论研究进展,并讨论了口模尺寸,温度,添加剂,分子量及分子量分布等因素对不稳定流动的影响。  相似文献   

9.
采用PTT黏弹模型,对聚合物熔体在T型异型材挤出口模内的三维等温流动进行数值模拟,得出口模内外速度、剪切速率、压力和应力分布.结果表明:由于出口效应,在口模出口处,速度、剪切速率、压力分布均发生突变.这种突变有可能造成负压,从而引发熔体破裂.口模内二次流动产生的剪切应力甚至会超过因挤出流动产生的剪切应力.应力易集中发生在口模截面的拐角处,随着挤出流量的增加,口模内最大剪切应力和最大第一法向应力差几乎线性地增加,而不会急剧增大.  相似文献   

10.
使用Brabender PLD 651 挤塑仪配不同长径比、不同材质的毛细管流变口模,测定了几种LLDPE在一定温度下的挤出物胀大和熔体破裂的临界剪切应力,同时用Instron 3211毛细管流变仪做了对比实验。结果表明,毛细管口模的长径比达到一定值后,挤出物胀大随剪切速率的变化关系与长径比无关。这一长径比值又随毛细管口模材质而有所不同。对于一定长径比的毛细管流变口模,熔体破裂的临界剪切应力与挤出温度、口模材质无关。通过实验可知,采用提高口模温度、增加口模长径比或改变口模材质均能推迟熔体破裂现象的发生,从而提高了挤出加工的生产量。  相似文献   

11.
Rheological behaviors of ultrahigh-molecular-weight polyethylene (PE)/high-density PE/SiO2 blends are investigated using parallel-plate rheometer and capillary rheometer. The molecular chain conformational change mechanism is used to explain flow instabilities during extrusion. The viewpoints are proposed: (1) critical shear rate depends on the relative strength of irreversible viscous loss and reversible elastic orientation for molecular chains in transverse velocity gradient field inside the die and (2) critical shear stress depends on the extent of molecular chain conformational change inside the die, and the ease of conformational recovery after leaving the die. Modified nano-SiO2 particles are detected a certain interfacial adhesion in PE matrix. The interfacial interaction limits viscous flow inside the die and conformational recovery after leaving the die, thus causing not only the flow instabilities to occur prematurely on shear rate and delaying sharkskin on shear stress, but also an alternate “sharkskin-melt fracture” appearance after global extrusion fracture. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47713.  相似文献   

12.
This work aimed to evaluate the effect of high-density polyethylene (HDPE) content and of shear rate on the die swell and flow instability of linear low-density polyethylene (LLDPE)/HDPE blends. The results showed that the die swell of the LLDPE/HDPE blends increased with the increase in the shear rate. At high shear rates, the increase in the HDPE content led to an increase in the die swell of LLDPE/HDPE blends. The surface morphology analysis of the extrudates by optical and scanning electron microscopy revealed the presence of sharkskin and stick–slip flow instabilities in LLDPE and LLDPE/HDPE blends at the shear rates investigated. These instabilities were attenuated with the addition of HDPE and almost disappeared in the LLDPE/HDPE blend containing 50 wt% of HDPE.  相似文献   

13.
H. Palza  B. Reznik  F. Hennrich  M. Wilhelm 《Polymer》2010,51(16):3753-878
The effect of single (SWCNT) and multi- (MWCNT) walled carbon nanotubes on the melt flow instabilities of polyethylenes with different topologies was characterized by means of a novel capillary rheometer allowing in-situ measurements of the pressure fluctuations inside the die and by scanning electron microscopy (SEM) analysis. Our results show that carbon nanotubes modify the main characteristics of the spurt instability developed by the linear polyethylene. Furthermore, the sharkskin instability, developed in short chain branched polyethylene, is reduced at low amounts of MWCNT and SWCNT. Noteworthy, the critical shear rate for the on-set of the spurt and the sharkskin instabilities decreases in the nanocomposites due to the physical interactions between the polymer and the nanofiller.At high shear rates, the gross melt fracture instability is completely erased in the nanocomposites based on the linear polymer whereas in short chain branched polyethylene the amplitude of this bulk distortion is rather moderated. These changes were confirmed by on-line pressure measurements using the novel capillary rheometer set-up. Based on our results, it is concluded that carbon nanotubes drastically affect the non-linear molecular dynamic leading to polyethylene melt flow instabilities.  相似文献   

14.
The influences of ultrasonic oscillations on rheological behavior and mechanical properties of metallocene‐catalyzed linear low‐density polyethylene (mLLDPE)/low‐density polyethylene (LDPE) blends were investigated. The experimental results showed that the presence of ultrasonic oscillations can increase the extrusion productivity of mLLDPE/LDPE blends and decrease their die pressure and melt viscosity during extrusion. Incorporation of LDPE increases the critical shear rate for sharkskin formation of extrudate, crystallinity, and mechanical properties of mLLDPE. The processing behavior and mechanical properties of mLLDPE/LDPE blends were further improved in the presence of ultrasonic oscillations during extrusion. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2522–2527, 2004  相似文献   

15.
The melt fracture instabilities of two broad molecular weight distribution (MWD) high‐density polyethylenes (one Ziegler–Natta and one metallocene HDPEs) are studied as functions of the temperature and geometrical details and type of die (cylindrical, slit, and annular). It is found that sharkskin and other melt fracture phenomena are distinctly different for these resins, despite their almost identical rheology. It is also found that the critical conditions for the onset of various melt fracture phenomena depend significantly on the type of die used for their study. For example, sharkskin melt fracture in slit and capillary extrusion was obtained at much small critical shear stress values compared with those found in annular extrusion. Moreover, the metallocene HDPE shows significant slip at the die wall in the sharkskin flow regime. On the other hand, the Ziegler–Natta HDPE has shown no sign of slip. These differences are discussed on the basis of differences in their MWDs that influence their melt elasticity. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

16.
The sharkskin and stick‐slip polymer extrusion instabilities are studied primarily as functions of the type of die geometry. Experimental observations concerning the flow curves, the critical wall shear stress for the onset of the instabilities, the pressure and flow rate oscillations, and the effects of geometry and operating conditions are presented for linear low‐density polyethylenes. It is found that sharkskin and stick‐slip instabilities are present in the capillary and slit extrusion. However, annular extrusion stick‐slip and sharkskin are absent at high ratios of the inside‐to‐outside diameter of the annular die. This observation also explains the absence of these phenomena in other polymer processing operations such as film blowing. These phenomena are explained in terms of the surface‐to‐volume ratio of the extrudates, that is, if this ratio is high, sharkskin and stick‐slip are absent. POLYM. ENG. SCI., 2008. © 2007 Society of Plastics Engineers  相似文献   

17.
Oscillatory flow and elastic turbulence belong to the types of flow instabilities frequently encountered during extrusion of polymer melts. The onset of these defects corresponds to the flow conditions when the critical shear stresses or the critical shear rates are attained. The critical values of shear stresses and shear rates were experimentally determined for linear polyethylene/branched polyethylene blends (IPE/bPE) that were prepared with various weight ratios. Consequently, mixture rules of the logarithmic type are proposed. These rules relate the critical value of shear stress (shear rate) of blend to the critical values of shear stresses (shear rates) of the individual pure components, weight fractions, and interaction parameters. There is a good agreement between the proposed mixture rules and experimentally determined critical values.  相似文献   

18.
The synergistic effects of boron nitride (BN) powder and die on the rheology and processability of metallocene‐catalyzed low density polyethylene (mLDPE) were investigated. The processability in the extrusion process is closely related to the interfacial properties between the polymer melts and the die wall. BN powder was added to mLDPE to reduce the friction coefficient and surface energy. Adding 0.5 wt% BN powder to mLDPE was very effective in improving the processability and the extrudate appearance. To study the effect of die surface property, three different dies were applied in capillary extrusion. One was conventional tungsten carbide (TC) die, and the others were hot‐pressed BN (hpBN) die and hot‐pressed BN composite (hpBNC) die. The applications of these BN dies were quite effective in delaying surface melt fracture (sharkskin) and postponing gross melt fracture to higher shear rate compared to the TC die. These improvements result from the fact that BN dies reduce the wall shear stress significantly and promote slip. The synergistic effect of processability could be obtained when both BN powder and hpBN die were used together.  相似文献   

19.
An experimental study was made of melt flow instabilities in extrusion of two-phase polymer systems. For the study, blends were prepared from two polymers: polystyrene (Dow Chemical STYRON 686) and high density polyethylene (Union Carbide DMDJ 4309). The experimental technique used in the present study was the same as that described in a previous paper by the authors. The study shows that there are abrupt increases both in exit pressure and in the recoverable shear strain (defined as the ratio of the exit pressure to shear stress) at the critical flow conditions. It has also been found that an addition of a small amount of high density polythylene (2.5 wt-% and 5.0 wt-%) increases the critical shear rate of polystyrene and hence results in a higher throughput rate before extrudate distortion is actually observed. This result is explained in terms of the independently determined melt elasticity of the two-phase systems investigated.  相似文献   

20.
Commercially available thermoplastic elastomers (TPEs) based on block copolymers of diisocyanates and polyols (i.e., TPUEs) were used to delay sharkskin and stick‐slip instabilities in the extrusion of linear low density polyethylene (LLDPE). When TPUE is added in a small mass fraction to LLDPE, it deposits at the die surface during extrusion and may postpone the onset of sharkskin instability to a 12–20 times higher rate of extrusion. Substantial delay of sharkskin was also achieved under conditions without slip of molten PE inside the die coated by TPUEs. Efficiency to delay the instabilities depends on elasticity of TPUE at processing temperature. The TPUEs could be a cost‐effective substitution of fluorinated polymers such as processing aid, lubricant and release agent in the processing of polyethylene by extrusion, blow molding, and injection molding. J. VINYL ADDIT. TECHNOL., 11:127–131, 2005. © 2005 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号