首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
以蜡下油/加氢裂化尾油混合物作为蒸汽裂解制乙烯装置原料,利用蒸汽裂解模拟试验装置研究其裂解性能,考察了蜡下油的掺入量、裂解温度和水油质量比对目标烯烃产物收率的影响。蜡下油/加氢裂化尾油混合原料的最佳蒸汽裂解工艺条件为:蜡下油掺入质量分数20%,裂解温度820 ℃,水油质量比0.75,此条件下产物乙烯、丙烯的收率分别为34.3%和14.65%。  相似文献   

2.
以某石化公司加氢尾油为裂解装置原料,利用蒸汽裂解模拟实验装置考察裂解温度、水/油比、停留时间等因素对低碳烯烃收率的影响。通过实验得到加氢尾油的最佳操作条件,为工业加氢尾油裂解炉操作提供参考数据。  相似文献   

3.
大豆油及石脑油蒸汽裂解加工工艺的研究   总被引:1,自引:0,他引:1  
以大豆油和石脑油为原料,分别进行了蒸汽裂解实验,考察了温度和水油质量比对产品收率的影响。结果表明,石脑油和大豆油生产乙烯、丙烯以及丁二烯时,产品收率变化趋势相同,随着裂解温度和水油比的升高,乙烯收率均增加,丙烯和丁二烯收率则先增加后降低。在裂解温度为750℃,水油比为0.8的条件下,大豆油的乙烯收率为22.8%,丙烯收率为9.5%,丁二烯收率为4.3%;石脑油的乙烯收率为21.8%,丙烯收率为14.2%,丁二烯收率为3.4%。  相似文献   

4.
用本院开发的加氢裂化催化剂,以高压加氢裂化、缓和加氢裂化、中压加氢裂化、中压加氢改质等工艺对不同原料进行了加氢裂化实验。本文系统地总结了加氢裂化尾油的性质及其蒸汽裂解制乙烯试验的结果。试验结果表明,针对不同馏分的原料,采用不同的加氢裂化工艺,加氢裂化尾油均为优质的蒸汽裂解制乙烯的原料。采用加氢裂化工艺可以有效地扩大乙烯原料来源,满足我国乙烯工业发展的需要。  相似文献   

5.
加氢裂化尾油蒸汽裂解性能的研究   总被引:5,自引:0,他引:5  
通过多种油品的蒸汽裂解结果比较,论述了原料性质、工艺条件及工艺流程对加氢裂化尾油蒸汽裂解性能的影响,认为选择加氢裂化尾油作为蒸汽裂解原料,是扩大乙烯原料来源的有效途径。  相似文献   

6.
对中国石化齐鲁分公司使用的裂解原料——加氢裂化尾油(HVGO)进行了物性测试,在SRT-IV型裂解炉上进行模拟裂解评价,考察裂解炉出口温度、稀释蒸汽比以及停留时间对裂解产物组成的影响,并提出了裂解工艺条件优化方案。  相似文献   

7.
对中国石化齐鲁分公司使用的裂解原料--加氢裂化尾油(HVCO)进行了物性测试,在SRT-IV型裂解炉上进行模拟裂解评价,考察裂解炉出口温度、稀释蒸汽比以及停留时间对裂解产物组成的影响,并提出了裂解工艺条件优化方案.  相似文献   

8.
以天津石化公司高压加氢裂化尾油作乙烯裂解原料,进行了裂解性能的评价和分析,并在CBL-IV炉上进行了实际工业应用,考察了裂解产物分布及收率。结果表明,高压加氢裂化尾油裂解产物中乙烯单程收率和三烯收率较高,液相产物中大于288℃裂解焦油收率较低,露点结焦趋势缓和。高压加氢裂化尾油是优质的裂解原料,解决了天津石化公司200 kt/a乙烯改造的原料平衡和优化问题。  相似文献   

9.
为满足市场对喷气燃料和优质尾油的需求,中国石化石油化工科学研究院(石科院)开发了新一代加氢精制催化剂RN-410和加氢裂化催化剂RHC-131,通过考察原料油、转化深度、产品切割方案对喷气燃料及尾油的影响规律并结合催化剂的级配优化方案,开发了大比例增产喷气燃料、改善尾油质量的加氢裂化技术,并在中国石化燕山分公司成功应用。工业应用结果表明,石脑油收率约为22%的情况下,喷气燃料馏分油收率达43%以上,产品质量满足3号喷气燃料要求,柴油并入尾油当中,尾油BMCI值为8.7,是优质的蒸汽裂解制乙烯原料。  相似文献   

10.
研究纳米沸石分子筛SHY-DL催化剂上的芳构化反应性能,探索临氢条件、二烯烃含量、反应温度及空速等条件对芳构化反应的影响。在固定床反应器上以炼油厂碳四烃为原料,在反应温度360~450℃、压力2.0MPa、碳四烃液相进料体积空速0.9~1.2h-1的操作条件下,碳四烯烃转化率达99%,干气产率小于2.0%,C5+液相收率为43%~50%,液相产物的RON和MON值为98.8和87.9。在实验室蒸汽热裂解评价装置上,研究碳四烃芳构化副产LPG裂解制乙烯的性能。结果表明,在裂解温度910℃、水油质量比0.45的条件下,LPG裂解的乙烯收率为30.98%,丙烯收率为15.95%,属较好的裂解制乙烯原料。  相似文献   

11.
催化裂化汽油裂解制备低碳烯烃   总被引:11,自引:1,他引:10  
在小型提升管催化裂化实验装置上研究了催化裂化(FCC)汽油催化裂解生产低碳烯烃的反应规律。实验结果表明,催化剂类型、反应温度、停留时间及水蒸气用量对乙烯、丙烯的产率均有显著的影响。高温、大剂油比、长停留时间及提高水蒸气用量都可促进汽油的裂解,增加低碳烯烃的产率。在实验室条件下,以ZC-7300为催化剂,多产低碳烯烃的最佳条件:反应温度580℃,停留时间1.6s左右,剂油质量比为11,水蒸气与汽油的质量比为0.20。对不同催化剂进行了对比实验得知,自制催化剂A的催化效果最好,汽油转化率达到40%以上,乙烯+丙烯的产率达到20%以上,焦炭和干气(不含乙烯)的产率不大于5%。  相似文献   

12.
赵如松  王雪强  高俊斌  高金森 《石油化工》2007,36(11):1110-1113
以正庚烷为高碳烃的模型化合物,在微反装置上对正庚烷的引发裂解进行了研究。从化学键能的角度筛选了引发剂,键能为180~260kJ/mol的化合物对正庚烷热裂解有较好的引发效果,其中硝基乙烷的效果最明显。以硝基乙烷为引发剂,考察了反应温度、引发剂用量、停留时间和水蒸气稀释比(水蒸气与正庚烷的质量比)对正庚烷引发裂解性能的影响。实验结果表明,升高反应温度、增加引发剂添加量都可提高正庚烷转化率、裂解气收率和乙烯收率。在反应温度600℃、停留时间0.22s、水蒸气稀释比0.15、硝基乙烷摩尔分数2.0%的条件下,与不添加硝基乙烷相比,裂解气收率和乙烯收率分别由1.42%和0.68%增加到7.09%和3.09%。  相似文献   

13.
采用反应管入口总摩尔流率不变的汽/烃质量比调节方法,用管式裂解炉二维工艺数学模型在较宽的操作条件范围内对大庆石脑油蒸汽热裂解制乙烯、丙烯、丁二烯和三烯总收率进行了模拟计算,并对结果进行了正交分析。结果表明,汽/烃质量比调节方法可确保各个操作条件间无交互作用,说明了各调节参数的独立性和本模拟计算结果的可靠性。不同目的产物具有不同的最佳操作条件,以乙烯、丙烯、丁二烯和三烯总收率最大为目标时最佳裂解温度分别为1143、1103、1133和1143 K。裂解深度主要取决于裂解温度,在裂解温度较低时停留时间和汽/烃质量比的作用较大,而在达到或大于最佳裂解温度后,两者的影响较小,应以高温、短停留时间来提高裂解反应的反应深度,汽/烃质量比的变化对提高目的产物的影响较小。  相似文献   

14.
棕榈油的催化转化研究   总被引:1,自引:0,他引:1  
 动植物油几乎不含硫、氮和重金属,利用其作为可再生清洁能源的研究已引起广泛重视。在提升管催化裂化实验装置上进行了棕榈油催化转化的研究。结果表明,与胜华催化原料相比,棕榈油的转化率较高,且基本不随反应条件(反应温度、停留时间、催化剂与原料油质量比)的变化而变化;液化气、丙烯、丁烯和乙烯收率均较高,且随着反应温度的升高和停留时间的延长而增加;汽油收率较高、柴油收率较低;产物分布受催化剂与原料油质量比的影响较小。棕榈油催化转化反应的丙烯收率较高,超过19%;产物汽油中芳烃质量分数可达46.88%。棕榈油本身不含芳烃,汽油中的芳烃由催化转化反应生成。在催化转化过程中,棕榈油中约76%的氧转化成H2O、CO、CO2。  相似文献   

15.
在XTL-5小型提升管催化裂化实验装置上,以苏丹达尔高酸原油为原料,进行催化裂解增产丙烯实验,考察了催化剂类型、反应温度、停留时间以及水油比对丙烯收率的影响。实验结果表明,采用多产丙烯LTB-2催化剂,不仅可以获得较高的丙烯收率和较低的低价值产物收率,同时可获得较高的柴油收率;提高反应温度、延长停留时间和提高水油比,均可提高丙烯的收率,其适宜的反应条件是反应温度520℃、停留时间1.6~2.0 s、水油比0.25。  相似文献   

16.
提出了一个重油催化裂解反应深度函数,根据试验数据回归得到了其与反应温度、油气停留时间、剂油比和水油比等操作条件之间的关联式,并在此基础上建立了裂解产品产率与催化裂解反应深度函数和原料性质(氢碳原子比)之间的关联模型.模型的预测结果与试验结果吻合较好.  相似文献   

17.
内蒙古图牧吉油砂流化热转化反应规律   总被引:1,自引:0,他引:1  
 在小型流化热转化实验装置上,考察了内蒙古图牧吉油砂的流化热转化反应规律。得到最佳的反应条件为反应温度490℃、反应时间5 min、水/油质量比0.4、热载体/油砂质量比2。在此最优操作条件下,液体产品收率达到79.87%, 轻油收率达到26.59%。随着图牧吉油砂流化热转化反应温度的升高,干气、液化气及汽油产率增加,这主要来自于重油的二次裂化。热转化后的液体产品相对于油砂沥青,残炭、微量金属含量及黏度都有大幅度的降低,同时馏程得到很大改善,有助于后续的加工利用。  相似文献   

18.
在小型固定床反应器、美国Xytel公司ACE(R型)装置和提升管催化裂化装置(Riser unit,RU)上,以Marbon减压馏分油、中间基性质的混合油(85%管输VGO掺混15%管输VR,质量分数)和石蜡基性质的减压蜡油(VGO)掺减压渣油(VR)构成的混合油(70%大庆VGO掺混30%大庆VR,质量分数)为催化进料,考察了主要操作参数对骨架异构化反应的影响。研究表明,反应温度、剂/油质量比(m(Catalyst)/m(Oil))、催化剂上焦炭沉积状况、反应质量空速和蒸汽注入量等操作参数对催化裂化过程中的骨架异构化反应均有影响。催化裂化过程中骨架异构化反应是放热过程,高反应温度会抑制骨架异构化反应。提高m(Catalyst)/m(Oil)可以增强催化裂化过程中的骨架异构化反应。焦炭对催化剂酸中心的覆盖能抑制骨架异构化反应,但其影响幅度小于对裂化反应的影响。骨架异构化反应是一个快速反应,低反应温度下减少反应时间会增强催化过程中的骨架异构化反应。水蒸气注入量的增加(即降低烃分压)会减少催化过程中的骨架异构化反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号