首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possibility that the lipoprotein complex of lung surfactant functions in pulmonary host defense as well as lowering surface tension at the air-liquid interface has been the subject of renewed interest in light of the finding that surfactant proteins A and D (SP-A and SP-D) are members of a family of proteins known as collectins. The collectins, so named because they have in common an NH2-terminal collagen-like domain and a COOH-terminal lectin (carbohydrate binding) domain, are found in both lung and serum and participate in "innate" immunity, acting before induction of an antibody-mediated response. In vitro, many of the collectins stimulate phagocytosis, chemotaxis, and production of reactive oxygen and regulate cytokine release by immune cells. It has been known for several years that surfactant lipids suppress a variety of immune cell functions, most notably lymphocyte proliferation, which, conversely, is augmented by SP-A. Thus surfactant lipids and proteins may be counterregulatory, and changes in lipid-to-protein ratios may be important in regulating the immune status of the lung. That these ratios change in disease states is clear, but it is not known whether the alterations are a cause or an effect. Important future studies with mice in which the SP-A and SP-D genes have been ablated will help clarify the role of surfactant in immune function.  相似文献   

2.
The biological functions of rat surfactant protein A (SP-A), an oligomer composed of 18 polypeptide subunits derived from a single gene, are dependent on intact disulfide bonds. Reducible and collagenase-reversible covalent linkages of as many as six or more subunits in the molecule indicate the presence of at least two NH2-terminal interchain disulfide bonds. However, the reported primary structure of rat SP-A predicts that only Cys6 in this region is available for interchain disulfide formation. Direct evidence for a second disulfide bridge was obtained by analyses of a set of three mutant SP-As with telescoping deletions from the reported NH2-terminus. Two of the truncated recombinant proteins formed reducible dimers despite deletion of the domain containing Cys6. Edman degradation revealed that each mutant protein was a mixture of two isoforms with and without an isoleucine-lysine-cysteine (IKC) extension at the NH2-terminus, which was derived from the COOH-terminal end of the reported signal peptide. Large variations in the abundance of the IKC isoforms between truncated SP-As suggested that the amino acid sequences located downstream from the signal peptide modulated alternate-site cleavage by signal peptidase. Elution of the newly identified cysteine in the position of DiPTH-Cys indicated participation in disulfide linkage, which was interchain based on the direct correlation between prevalence of the IKC variant and the extent of dimerization for each truncated protein. Sequencing of both native rat SP-A and human SP-A also revealed isoforms with disulfide-forming NH2-terminal extensions. The extended rat SP-A isoforms were enriched in the more fully glycosylated and multimeric SP-A species separated on SDS-PAGE gels. Thus, a novel post translational modification results in naturally occurring cysteinyl isoforms of rat SP-A, which are essential for multimer formation.  相似文献   

3.
In the mixture of lipids and proteins which comprise pulmonary surfactant, the dominant protein by mass is surfactant protein A (SP-A), a hydrophilic glycoprotein. SP-A forms octadecamers that interact with phospholipid bilayer surfaces in the presence of calcium. Deuterium NMR was used to characterize the perturbation by SP-A, in the presence of 5 mM Ca(2+), of dipalmitoyl phosphatidylcholine (DPPC) properties in DPPC/egg-PG (7:3) bilayers. Effects of SP-A were uniformly distributed over the observed DPPC population. SP-A reduced DPPC chain orientational order significantly in the gel phase but only slightly in the liquid-crystalline phase. Quadrupole echo decay times for DPPC chain deuterons were sensitive to SP-A in the liquid-crystalline mixture but not in the gel phase. SP-A reduced quadrupole splittings of DPPC choline beta-deuterons but had little effect on choline alpha-deuteron splittings. The observed effects of SP-A on DPPC/egg-PG bilayer properties differ from those of the hydrophobic surfactant proteins SP-B and SP-C. This is consistent with the expectation that SP-A interacts primarily at bilayer surfaces.  相似文献   

4.
It is shown that human lung surfactant protein (SP-A) mediates selective exchange of phospholipid probes with unlabeled phospholipid in excess vesicles in the presence of calcium and NaCl. The exchange occurs without leakage of vesicle contents, or transbilayer movement (flip-flop) of the phospholipid probes, or fusion of vesicles. Individual steps preceding the exchange are dissected by a combination of protocols, and the results are operationally interpreted in terms of a model where a calcium-dependent change in SP-A triggers aggregation of vesicles followed by probe exchange between the vesicles in contact through SP-A. The contacts remain stable in the presence of calcium; i.e., the vesicles in contact do not change their partners on the time scale of several minutes. The binding of SP-A to vesicles and the aggregation of vesicles are rapid, and the aggregation is rapidly reversed by EGTA; i.e., both the forward and reverse aggregation reactions are complete in about 1 min. The exchange rate of the various probes between aggregated vesicles below 1 mM calcium in the presence of NaCl shows selectivity, i.e., a modest dependence on the net anionic charge on vesicles and for the headgroup of the probe. Exchange with lower selectivity is seen at >2 mM Ca in the absence of NaCl. SP-A binding to vesicles does not show an absolute specificity for the phospholipid structure, but the time course of the subsequent changes does. The results suggest that SP-A contacts between phospholipid interfaces could mediate the exchange of phospholipid species (trafficking and sorting) between lung surfactant pools in the hypophase and all accessible phospholipid interfaces of the alveolar space.  相似文献   

5.
In the present report we have characterized the binding of surfactant protein A (SP-A) to bone marrow-derived macrophages, U937 cells, alveolar macrophages, and type II epithelial cells. The binding of SP-A to all cell types is Ca2+-dependent and trypsin-sensitive, but type II cells express distinct Ca2+-independent binding sites. The binding of SP-A to macrophages is independent of known cell surface carbohydrate-specific receptors and of glycoconjugate binding sites on the surface of the cells and is distinct from binding to C1q receptors. Based on ligand blot analysis, both type II cells and macrophages express a 210-kDa SP-A-binding protein. The 210-kDa protein was purified to apparent homogeneity from U937 macrophage membranes using affinity chromatography with noncovalently immobilized surfactant protein A, and was purified from rat lung by differential detergent and salt extraction of isolated rat lung membranes. Polyclonal antibodies against the rat lung SP-A-binding protein inhibit binding of SP-A to both type II cells and macrophages, indicating that the 210-kDa protein is expressed on the cell surface. The polyclonal antibodies also block the SP-A-mediated inhibition of phospholipid secretion by type II cells, indicating that the 210-kDa protein is a functional cell-surface receptor on type II cells. In a separate report we have determined that antibodies to the SP-A receptor block the SP-A-mediated uptake of Mycobacterium bovis, indicating that the macrophage SP-A receptor is involved in SP-A-mediated clearance of pathogens.  相似文献   

6.
We analyzed the binding mechanism of human recombinant lung surfactant protein A (SP-A) to rat alveolar macrophages using anti-SP-A antiserum and protein A coated onto gold particles. Results were compared with our recent data on binding and uptake of SP-A-coated colloidal gold particles. The rationale for the current approach was to avoid any possible steric effects on SP-A binding to the cell surface. Binding of unlabeled SP-A depends on the presence of calcium ions in the medium and involves a mannose-specific mechanism. Binding is partly inhibited by the collagenase-resistant fragment of SP-A, representing mainly the globular part of SP-A. Taken together, these facts indicate binding of SP-A via the carbohydrate binding site on the globular region of SP-A. On the other hand, a partial inhibition of SP-A binding by fragments of C1q (representing the collagenous region of C1q) indicates a second binding site for SP-A by the collagen-like portion to the C1q receptor of macrophages. We conclude that two different mechanisms are probably involved in SP-A binding to alveolar macrophages. Specificity of the binding was shown with fluorescein-labeled SP-A. Binding was inhibited by an excess of unlabeled SP-A. Binding and uptake of SP-A are seen only with alveolar macrophages and not with other macrophage populations isolated from rat, such as liver macrophages (Kupffer cells), resident peritoneal macrophages, and peritoneal macrophages activated by Corynebacterium parvum. Therefore, binding sites for SP-A occur exclusively on alveolar macrophages.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
In previous studies, tandem mutagenesis of Glu195 and Arg197 of surfactant protein A (SP-A) has implicated both residues as critical participants in the interaction of the molecule with alveolar type II cells and phospholipids. We substituted Ala, Lys, His, Asp, and Asn mutations for Arg to evaluate the role of a basic amino acid at position 197 in SP-A action. Unexpectedly, Ala197 retained complete activity in the SP-A functions of carbohydrate binding, type II cell binding, inhibition of surfactant secretion, lipid binding, lipid aggregation, and lipid uptake by type II cells. The results unambiguously demonstrate that Arg197 is not mechanistically essential for SP-A function. The Lys197 mutation displayed all functions of the wild type protein but exhibited a 2-fold increase in lipid uptake activity. The His197 mutation displayed all SP-A functions studied except for lipid uptake. The results obtained with the His197 mutation clearly demonstrate that lipid aggregation alone by SP-A is insufficient to promote lipid uptake by type II cells. These findings indicate that specific interactions between type II cells and SP-A are involved in the phospholipid uptake processes.  相似文献   

8.
9.
Surfactant convertase is required for conversion of heavy density (H) natural surfactant to light density (L) subtype during cycling in vitro, a technique that reproduces surfactant metabolism. To study mechanisms of H to L conversion, we prepared liposomes of dipalmitoylphosphatidylcholine (DPPC) and phosphatidylglycerol (PG), or the phospholipids (PL) in combination with either surfactant protein A (SP-A), surfactant protein B (SP-B), or both SP-A and SP-B. Phospholipids alone showed time-dependent conversion from heavy to light subtype on cycling in the absence of convertase, which was decreased by adding SP-B, but not SP-A, to phospholipids (p < 0.01 for PL+SP-B, or PL+SP-A+SP-B vs. PL, or PL+SP-A). The ultrastructure, surface activity, buoyant density, and L subtype generation on cycling PL+SP-A+SP-B with partially purified convertase or with phospholipase D were similar to those of natural TM. In conclusion, a reconstituted surfactant mimics the behavior of natural surfactant on cycling, and reveals that interaction of SP-B with phospholipids decreases L subtype generation. In addition, esterase/ phospholipase D activity is required for conversion of heavy to light subtype on cycling.  相似文献   

10.
Pulmonary surfactant proteins A (SP-A) and D (SP-D) are collectins in the C-type lectin superfamily. SP-A binds to dipalmitoylphosphatidylcholine and galactosylceramide, and it regulates the uptake and secretion of surfactant lipids by alveolar type II cells. In contrast, SP-D binds to phosphatidylinositol (PI) and glucosylceramide (GlcCer). We investigated the functional region in the carbohydrate recognition domain of rat SP-A and SP-D that is involved in binding lipids and interacting with alveolar type II cells by using chimeric proteins. Chimeras ad3, ad4, and ad5 were constructed with SP-A/SP-D splice junctions at Gly194/Glu321, Gln173/Thr300, and Met134/Cys261, respectively. All three chimeras lost SP-A-specific functions. Chimeras ad3, ad4, and ad5 bound to PI with increasing activity. In contrast, chimeras ad3 and ad4 did not bind to GlcCer, whereas ad5 avidly bound this lipid. From these results, we conclude that 1) the SP-A region of Glu195-Phe228 is required for lipid and type II cell interactions, 2) the SP-D region of Cys261-Phe355 is required for optimal lipid interactions, and 3) the structural requirement for the binding of SP-D to PI is different from that for GlcCer.  相似文献   

11.
Surfactant protein A (SP-A) binds to dipalmitoylphosphatidylcholine (DPPC) and induces phospholipid vesicle aggregation. It also regulates the uptake and secretion of surfactant lipids by alveolar type II cells. We introduced the single mutations Glu195-->Gln (rE195Q), Lys201-->Ala (rK201A) and Lys203-->Ala (rK203A) for rat SP-A, Arg199-->Ala (hR199A) and Lys201-->Ala (hK201A) for human SP-A, and the triple mutations Arg197, Lys201 and Lys203-->Ala (rR197A/K201A/K203A) for rat SP-A, into cDNAs for SP-A, and expressed the recombinant proteins using baculovirus vectors. All recombinant proteins avidly bound to DPPC liposomes. rE195Q, rK201A, rK203A, hR199A and hK201A function with activity comparable to wild type SP-A. Although rR197A/K201A/K203A was a potent inducer of phospholipid vesicle aggregation, it failed to stimulate lipid uptake. rR197A/K201A/K203A was a weak inhibitor for lipid secretion and did not competed with rat [125I]SP-A for receptor occupancy. From these results, we conclude that Lys201 and Lys203 of rat SP-A, and Arg199 and Lys201 of human SP-A are not individually critical for the interaction with lipids and type II cells, and that Glu195 of rat SP-A can be replaced with Gln without loss of SP-A functions. This study also demonstrates that the SP-A-mediated lipid uptake is not directly correlated with phospholipid vesicle aggregation, and that specific interactions of SP-A with type II cells are involved in the lipid uptake process.  相似文献   

12.
A marked sequence homology has been noted between lung surfactant protein A (SP-A) and an inhibitor of phospholipase A2 (PLA2) isolated from the serum of Trimeresurus flavoviridis (Habu snake). This study evaluated the effect of SP-A on PLA2 activity from several sources. SP-A was isolated from bovine or rat lung surfactant by extraction with 1-butanol and octyl beta-D-glucopyranoside. The addition of SP-A produced a concentration-dependent inhibition of T. flavoviridis PLA2 that indicated non-competitive kinetics with Ki 5 micrograms/ml. Inhibition was reversed by heat inactivation, disulfide bond reduction or alkylation of SP-A, or by the presence of anti-SP-A antibody. Treatment of SP-A with endoglycosidase F or the presence of variation monosaccharides or lectins did not alter SP-A inhibition. Binding of PLA2 to SP-A was shown by ultrafiltration and was abolished by SP-A alkylation or the presence of SDS. The SP-A/PLA2 complex recovered from the ultrafilter had essentially no enzymatic activity, but activity was restored by treatment with mercaptoethanol. SP-A had no effect on activity of PLA2 from Naja naja, Crotalus atrox, or bovine pancreas. These results indicate that surfactant protein A selectively inhibits Trimeresurus phospholipase A2 activity and suggest that binding to the enzyme is the mechanism for inhibition.  相似文献   

13.
The aim of the present study was to identify the N-terminal regions of human corticotropin-releasing factor (CRF) receptor type 1 (hCRF-R1) that are crucial for ligand binding. Mutant receptors were constructed by replacing specific residues in hCRF-R1 with amino acids from the corresponding position in the N-terminal region of the human vasoactive intestinal peptide receptor type 2 (hVIP-R2). In cyclic AMP stimulation and CRF binding assays, it was established that two regions within the N-terminal domain were crucial for the binding of CRF receptor agonists and antagonists: one region mapping to amino acids 43-50 and a second amino acid sequence extending from position 76 to 84 of hCRF-R1. Recently, it was found that the latter sequence plays a very important role in determining the high ligand selectivity of the Xenopus CRF-R1 (xCRF-R1). Replacement of amino acids 76-84 of hCRF-R1 with residues from the same segment of the hVIP-R2 N terminus markedly reduced the binding affinity of CRF ligands. Mutation of Arg76 or Asn81 but not Gly83 of hCRF-R1 to the corresponding amino acids of xCRF-R1 or hVIP-R2 resulted in 100-1,000-fold lower affinities for human/rat CRF, rat urocortin, and astressin. These data underline the importance of the N-terminal domain of CRF-R1 in high-affinity ligand binding.  相似文献   

14.
It has recently been demonstrated that the C-terminal deletion mutant of recombinant human carbonic anhydrase IV (G267X CA IV) converts the normally glycosylphosphatidylinositol-anchored enzyme into a soluble secretory form which has the same catalytic properties as the membrane-associated enzyme purified from human tissues. We have determined the three-dimensional structure of the secretory form of human CA IV by x-ray crystallographic methods to a resolution of 2.8 A. Although the zinc binding site and the hydrophobic substrate binding pocket of CA IV are generally similar to those of other mammalian isozymes, unique structural differences are found elsewhere in the active site. Two disufide linkages, Cys-6-Cys-11G and Cys-23-Cys-203, stabilize the conformation of the N-terminal domain. The latter disulfide additionally stabilizes an active site loop containing a cis-peptide linkage between Pro-201 and Thr-202 (this loop contains catalytic residue Thr-199). On the opposite side of the active site, the Val-131-Asp-136 segment adopts an extended loop conformation instead of an alpha-helix conformation as found in other isozymes. Finally, the C terminus is surrounded by a substantial electropositive surface potential, which is likely to stabilize the interaction of CA IV with the negatively charged phospholipid headgroups of the membrane. These structural features are unique to CA IV and provide a framework for the design of sulfonamide inhibitors selective for this particular isozyme.  相似文献   

15.
Surfactant protein D (SP-D) is a 43-kDa member of the collectin family of collagenous lectin domain-containing proteins that is expressed in epithelial cells of the lung. The SP-D gene was targeted by homologous recombination in embryonic stem cells that were used to produce SP-D (+/-) and SP-D (-/-) mice. Both SP-D (-/-) and SP-D (+/-) mice survived normally in the perinatal and postnatal periods. Whereas no abnormalities were observed in SP-D (+/-) mice, alveolar and tissue phosphatidylcholine pool sizes were markedly increased in SP-D (-/-) mice. Increased numbers of large foamy alveolar macrophages and enlarged alveoli were also observed in SP-D (-/-) mice. Phospholipid composition was unaltered in SP-D (-/-) mice, but surfactant morphology was abnormal, consisting of dense phospholipid membranous arrays with decreased tubular myelin. The pulmonary lipoidosis in the SP-D (-/-) mice was not associated with accumulation of surfactant proteins B or C, or their mRNAs, distinguishing the disorder from alveolar proteinosis syndromes. Surfactant protein A mRNA was reduced and, SP-A protein appeared to be reduced in SP-D (-/-) compared with wild type mice. Targeting of the mouse SP-D gene caused accumulation of surfactant lipid and altered phospholipid structures, demonstrating a previously unsuspected role for SP-D in surfactant lipid homeostasis in vivo.  相似文献   

16.
BACKGROUND: Progressive pulmonary dysfunction is a characteristic symptom of cystic fibrosis (CF) and is associated with functional impairment and biochemical alterations of surfactant phospholipids in the airways. However, the fundamental question of whether surfactant alterations in the CF lung are secondary to the pulmonary damage or are present before initiation of chronic infection and inflammation has yet to be resolved in patients with cystic fibrosis but can now be addressed in CF mice that exhibit the basic defect in the airways. A study was therefore undertaken to investigate the pool sizes, composition, and function of lung surfactant in the non-infected cftrm1HGU/m1HGU mouse. METHODS: The amount and composition of phospholipid classes and phosphatidylcholine molecular species were determined in bronchoalveolar lavage (BAL) fluid and lavaged lungs by high performance liquid chromatography (HPLC). Surfactant protein A (SP-A) levels in BAL fluid were determined by ELISA and surfactant for functional measurements was isolated from BAL fluid by differential ultracentrifugation. Equilibrium and minimal surface tension of surfactant was assessed by the pulsating bubble surfactometer technique. MF1, BALB/c, C57/BL6, and C3H/He mice served as controls. RESULTS: BAL fluid of cftrm1HGU/m1HGU mice contained 1.02 (95% confidence interval (CI) 0.89 to 1.16) mumol phospholipid and 259 (239 to 279) ng SP-A. BAL fluid of MF1, BALB/c, C57BL/6, and C3H/He mice contained 0.69 (0.63 to 0.75), 0.50 (0.42 to 0.57), 0.52 (0.40 to 0.64), and 0.45 (0.27 to 0.63) mumol phospholipid, respectively. After correction for the different body weights of mouse strains, phospholipid levels in BAL fluid of cftrm1HGU/m1HGU mice were increased by 64 (52 to 76)%, 60 (39 to 89)%, 72 (45 to 113)%, and 92 (49 to 163)%, respectively, compared with controls. The amount of SP-A in BAL fluid and the composition of phospholipid as well as phosphatidylcholine molecular species in BAL fluid and lung tissue was unchanged in cftrm1HGU/m1HGU mice compared with controls. The increase in phospholipids in BAL fluid of cftrm1HGU/m1HGU mice resulted from an increased fraction of large aggregates which exhibited normal surface tension function. CONCLUSION: In cftrm1HGU/m1HGU mice surfactant homeostasis is perturbed by an increased phospholipid pool in the alveolar compartment.  相似文献   

17.
Pneumocystis carinii is a common cause of life-threatening pneumonia in immunodeficient patients. Pulmonary surfactant protein A (SP-A), an alveolar glycoprotein containing collagen-like and carbohydrate recognition domains (CRD), binds P. carinii and enhances adherence to alveolar macrophages. In this study, we examined the structural basis of the interaction between SP-A and the major surface glycoprotein of P. carinii (MSG). Rat SP-A bound to purified rat P. carinii-derived MSG in a saturable and calcium-dependent manner, which was partially reversible by coincubation with excess monosaccharides, or pretreatment of MSG with N-glycanase. Mutant recombinant SP-As with neutral amino acid substitutions for the predicted calcium- and carbohydrate-coordinating residues of the CRD were synthesized in insect cells using baculovirus vectors and tested for binding to MSG. Substitutions of negatively charged (Glu195, Glu202, and Asp215) and polar residues (Asn214) of the CRD with alanine but not substitution of the Arg197 with glycine reduced the binding of SP-A to mannose-Sepharose beads and to MSG. Deletion of the N-linked oligosaccharides from SP-A by mutagenesis of the consensus sequences for glycosylation had no effect on binding. We conclude that the CRD mediates the binding of SP-A to oligosaccharides attached to MSG.  相似文献   

18.
19.
Two surfactant protein A (SP-A) genes and several alleles for each SP-A locus have been previously described. In this report we investigate the potential usefulness of the SP-A loci as markers for genetic studies. We establish conditions that allow the identification of alleles with very similar sequences; We also determine the degree of polymorphism for each SP-A locus: The heterozygosity and polymorphism information content (PIC) values for the SP-A1 locus are 0.63 and 0.55, respectively, and for the SP-A2 locus are 0.50 and 0.56. In the course of these studies, we identify one new SP-A2 allele and show that the SP-A1 and SP-A2 loci are in linkage disequilibrium (P < 0.000001). We also identify 19 of the 20 possible haplotypes in a population of n = 239. Nine of the observed haplotypes reach statistical significance (P < 0.01) in this population, and the segregation of two haplotypes (6A2/1A0 and 6A4/1A) without recombination is verified in a family pedigree. These data together indicate that both SP-A loci are sufficiently polymorphic to be good markers for use in genetic studies. Furthermore, the finding of one novel allele suggests that additional unknown SP-A alleles are yet to be found.  相似文献   

20.
Genetics of the hydrophilic surfactant proteins A and D   总被引:1,自引:0,他引:1  
The use of candidate genes has increased the ability to identify genetic factors involved in diseases with complex and multifactorial etiology. The surfactant proteins (SP) A and D are involved in host defense and inflammatory processes of the lung, which are often components of pulmonary disease. Therefore, the SP-A and SP-D genes make particularly good candidates to study factors contributing to pulmonary disease etiopathogenesis. Moreover, SP-A also plays a role in the surface tension lowering abilities of pulmonary surfactant, which is essential for normal lung function. Although genetic variability at the SP-D locus may exist among humans, allelic variants have not yet been characterized. On the other hand, the human SP-A genes (SP-A1 and SP-A2) are characterized by genetically dependent splice variants at the 5' untranslated region and allelic variants. The polymorphisms that give rise to SP-A1 and SP-A2 alleles are contained within coding regions, potentially having an effect on protein function. There appears to be a correlation between SP-A genotype and SP-A mRNA content. Furthermore, one SP-A2 allele (1A0) shown to associate with low SP-A mRNA levels is found with higher frequency in a subgroup with respiratory distress syndrome. The evidence gathered thus far indicates that SP-A, possibly by interacting with other surfactant components, may play a role (e.g. be a susceptibility factor) in the development of respiratory disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号