首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Turning is one of the most commonly used cutting processes for manufacturing components in production engineering. The turning process, in some cases, is accompanied by intense relative movements between tool and workpiece, which is called chatter vibrations. Chatter has been identified as a detrimental problem that adversely impacts surface finish, tool life, process productivity, and dimensional accuracy of the machined part. Cooling/Lubrication in the turning process is normally done for some reasons, including friction and force reduction, temperature decrement, and surface finish improvement. Wet cooling is a traditional cooling/lubrication process that has been used in machining since the past. Besides, a variety of new cooling and lubricating approaches have been developed in recent years, such as the minimum quantity lubrication (MQL), cryogenic cooling, nanolubrication, etc., due to ecological issues. Despite the importance of cooling/lubrication in machining, there is a lack of research on chatter stability in the presence of cutting fluid in cutting processes. In this study, the chatter vibration in turning process for two cooling/lubrication conditions of conventional wet and MQL is investigated. An integrated theoretical model is used to predict both the metal cutting force and the chatter stability lobe diagram (SLD) in turning process. This model involves deriving a math equation for predicting metal cutting force for both wet and MQL conditions using experimental training force data and a Genetic Expression Programming (GEP)-based regression model. Also, the traditional single degree of freedom chatter model is used here for predicting the SLDs. The chatter model is discussed and verified with experimental tests. Then, the experimental results of the tool's acceleration signal, work surface texture, surface roughness, chip shape, and tool wear are presented and compared for wet and MQL conditions. The results of this study show that the cooling/lubrication systems such as wet or MQL have a considerable effect on the SLDs. Also, the predicted results of metal cutting force and SLD for both wet and MQL techniques are in good agreement with the experimental data. Therefore, it is recommended that for each lubrication condition including wet, or MQL, the SLD be determined to achieve higher machinability.  相似文献   

2.

Chatter causes machining instability and reduces productivity in the metal cutting process. It has negative effects on the surface finish, dimensional accuracy, tool life and machine life. Chatter identification is therefore necessary to control, prevent, or eliminate chatter and to determine the stable machining condition. Previous studies of chatter detection used either model-based or signal-based methods, and each of them has its drawback. Model-based methods use cutting dynamics to develop stability lobe diagram to predict the occurrence of chatter, but the off-line stability estimation couldn’t detect chatter in real time. Signal-based methods apply mostly Fourier analysis to the cutting or vibration signals to identify chatter, but they are heuristic methods and do not consider the cutting dynamics. In this study, the model-based and signal-based chatter detection methods were thoroughly investigated. As a result, a hybrid model- and signal-based chatter detection method was proposed. By analyzing the residual between the force measurement and the output of the cutting force model, milling chatter could be detected and identified efficiently during the milling process.

  相似文献   

3.
Chatter may cause fast wear of tools and poor surface quality of the workpieces at high cutting speed and it will happen on different process parameters; how do we select the suitable cutting speed to suppress the chatter? In this paper, a signal analysis method for milling force and acceleration is adopted to identify chatter, which can obtain the results not only in frequency of chatter but also in the contribution for milling force at different frequencies. Through the milling experiment, the machining vibration behaviors of milling Ti–6Al–4V with variable pitch end mill were investigated. Milling force and acceleration signals obtained from experiment were analyzed and compared at stable and unstable milling processes. The experimental results show that when the chatter occurs, milling forces were found to increase dramatically by 61.9–66.8% compared with that of at stable cutting; machining surface quality became poor and machined surface roughness increases by 34.2–40.5% compared with that of at stable cutting.  相似文献   

4.
The tuned mass damper(TMD) has been successfully applied to the vibration control in machining,while the most widely adopted tuning is equal peaks,which splits the magnitude of the frequency response function(FRF) into equal peaks.However,chatter is a special self-excited problem and a chatter-free machining is determined by FRF at the cutting zone.A TMD tuning aiming at achieving the maximum chatter stability is studied,and it is formulated as an optimization problem of maximizing the minimum negative real part of FRF.By employing the steepest descend method,the optimum frequency and damping ratio of TMD are obtained,and they are compared against the equal peaks tuning.The advantage of the proposed tuning is demonstrated numerically by comparing the minimum point of the negative real part,and is further verified by damping a flexible mode from the fixture of a turning machine.A TMD is designed and placed on the fixture along the vibration of the target mode after performing modal analysis and mode shape visualization.Both of the above two tunings are applied to modify the tool point FRF by tuning TMD respectively.Chatter stability chart of the turning shows that the proposed tuning can increase the critical depth of cut 37% more than the equal peaks.Cutting tests with an increasing depth of cut are conducted on the turning machine in order to distinguish the stability limit.The tool vibrations during the machining are compared to validate the simulation results.The proposed damping design and optimization routine are able to further increase the chatter suppression effect.  相似文献   

5.
The expeditious nature of manufacturing markets inspires advancements in the effectiveness, efficiency and precision of machining processes. Often, an unstable machining phenomenon, called regenerative chatter, limits the productivity and accuracies in machining operations. Since the 1950s, a substantial amount of research has been conducted on the prevention of chatter vibration in machining operations. In order to prevent regenerative chatter vibrations, the dynamics between the machine tool and workpiece are critical. Conventional regenerative chatter theories have been established based on the assumption that the system parameters in machining are constant. However, the dynamics and system parameters change due to high spindle speeds, tool geometries, orientation of the tool with respect to the rest of the machine, tool wear and non-uniform workpiece material properties. This paper provides a novel method, based on the robust stability theorem, to predict chatter-free regions for machining processes, by taking in account the unknown uncertainties and changing dynamics for machining. The effects of time-variant parameters on the stability are analyzed using the robust stability theorem. The experimental tests are performed to verify the stability of SDOF and MDOF milling systems. The uncertainties and changing dynamics are taken into account in order to accommodate the optimal selection of machining parameters, and the stability region is determined to achieve high productivity and accuracy through applications of the robust stability theorem.  相似文献   

6.
Production of precise high-value mechanical elements requires a hundred percent on-site control. Chatter may occur due to random events. Although an unaided human eye can also easily identify the presence of chatter marks, it is economically ineffective. Therefore, an algorithm based on machine vision signals was proposed for surface inspection. The algorithm was designed to build an error map of the examined surface and highlight the regions of probable imperfections. The algorithm is based on local gradient estimation, applied in respect to milling parameters. Estimated local gradient directions are used to calculate the ridge/valley orientations of the machined surface. The local ridge orientation is used for the purpose of computing the surface error map. An experiment was made to test the algorithm. Milled surfaces in both chatter-free and chatter-rich conditions have been analysed with the presented method.  相似文献   

7.
Abstract

This study designed an automatic cutting feed adjustment system for computer numerical control (CNC) turning machine tools, which integrate the operational characteristics of cutting force control and chatter suppression control to shorten the machining time and maintain the quality of workpieces. The setting of appropriate machining conditions (such as cutting feed, spindle speed and depth of cut) to consider both machining quality and efficiency often causes difficulties for machine tool operators. Therefore, this study uses cutting force control to design an automatic cutting feed adjustment method for cutting tools, and then, the chatter suppression control design is used to modify the cutting force command to suppress cutting chatter. The experimental results of the CNC turning machine tool show that the use of the cutting force control to adjust the cutting feed can shorten the machining time; however, the cutting chatter results in larger surface waviness on the workpiece surface. When the cutting force command is properly modified by actuating the chatter suppression control, the workpiece shows better surface roughness with prolonged machining time. Therefore, the cutting tests demonstrate that the proposed system is feasible for satisfying the machining requirements of the manufacturing processes of mechanical parts for high speed and high accuracy.  相似文献   

8.
Excessive vibration, such as chatter, is a common problem in machining processes. Meanwhile, numerous hard, brittle metals have been shown to form segmented chips, also known as sawtooth chips, during machining. In the literature, a cyclic cutting force has been demonstrated where segmented chips are formed, with the force cycle corresponding to the formation of segments. Segmented chip formation has been shown to be linked to high vibration levels in turning and milling processes. Additionally, it has been proposed that the amplitude of chatter vibrations can be limited by interference between the tool flank and wavy workpiece surface, a phenomenon known as tool-flank process damping. In this contribution, a model is proposed to predict the amplitude of forced vibration arising due to the formation of segmented chips during turning. The amplitude of vibration was calculated as a function of cutting parameters. It was demonstrated that the model can be extended to account for the effect of tool-flank process damping. For validation, titanium Ti6Al4V alloy was turned using a flexible toolholder, with surface speed ranging from 10 to 160 m/min, feed rate from 0.1 to 0.7 mm/rev and width of cut from 0.35 to 4 mm. In the experimental validation, 25 of 68 test cuts exhibited high-amplitude vibration. In 16 of these cases, the main cause was concluded to be chip segmentation, which can be predicted by the model. The model is thus considered of practical value to machinists.  相似文献   

9.
深孔加工在航空发动机制造过程中广泛存在,由于其刚性弱,静态让刀量大,导致加工颤振和刀具磨损严重,使得其加工质量难以得到保证。超声振动切削作为一种特种切削加工手段,具有降低切削力,提高系统刚性和抑制加工颤振等优势。将超声振动应用于深孔镗削,进行了断屑条件验证,孔径误差测量,已加工表面粗糙度测量以及表面形貌观测等试验。试验结果表明,超声振动镗削能够有效缓解深孔镗削过程中的堵屑问题,减小孔径误差和表面粗糙度,抑制切削颤振,从而改善深孔镗削加工质量。  相似文献   

10.
With the wide application of high-speed cutting technology, high-speed machining approach of titanium alloy has become one of the most effective ways to improve processing efficiency and to reduce the processing cost, but the cutting chatter which often occurs in the cutting process not only affects the machining surface quality but also reduces the production efficiency. Regenerative chatter is a typical phenomenon during actual cutting, and it has the greatest impact on the cutting process. With the purpose of avoiding regenerative chatter and selecting appropriate cutting parameters to achieve a steady cutting process and a high surface quality, it is necessary to determine the critical boundary conditions where chatter occurs. Built on the work of previous theoretical researches of regenerative chatter, this paper utilized Visual C++ software to calculate the chatter stability domain during the finish machining of titanium alloy. It was shown that the border between a stable cut and an unstable cut can be visualized in terms of the axial depth of cut as a function of the spindle speed. Using the result, it can find the specific combination of machining parameters, which lead to the maximum chatter-free material removal rate. In order to verify the result, the high-speed milling experiment of an I-shaped thin-walled workpiece made of titanium alloy was conducted. It revealed that the actual machining result was consistent with the calculation prediction. This study will offer a useful guide for effective parameter selection in future CNC machining applications.  相似文献   

11.
切削载荷下加工系统的颤振现象直接影响加工过程的效率和性能。本文介绍了一种基于经验模式分解(Empirical Mode Decomposition,EMD)的机床刀具颤振分析方法。通过对机床主轴的振动信号进行综合分析,并对异常颤振信号进行EMD分解以获得本征模函数,采用Hilbert变换得到其包络信号,计算包络谱,提取噪声信号的特征频率,对特征频率进行支持向量机(Support Vector Machine,SVM)颤振判别学习,通过现场信号验证,证明该方法能有效检测加工颤振。  相似文献   

12.
应用电流变液复合结构的特殊性能,研究开发了一种双电极智能颤振抑制结构,用于机床车削过程颤振的控制。实验结果证明,利用电流变智能颤振抑制结构对机床车削振动可以进行有效的控制,从而提高工件表面的加工质量,改善刀具切削加工性能。  相似文献   

13.
The aim of the present study is to investigate chatter when using carbide inserts by measuring surface roughness of the workpiece. Dimensional accuracy of the workpiece is affected by vibration. In order to suppress chatter, the tool was provided with an ultra thin metal rubber laminate between the tool holder and insert. An experimental investigation has been carried out in CNC lathe using a “design of experiments” approach. In this study, vibration of the tool and surface roughness of the workpiece were measured. It has been observed that the vibration of the tool, as well as the tool insert, has been reduced by using ultra thin rubber layered laminates, and the surface finish of the workpiece has been improved.  相似文献   

14.
The aim of the present study is to investigate chatter when using carbide inserts by measuring surface roughness of the workpiece. Dimensional accuracy of the workpiece is affected by vibration. In order to suppress chatter, the tool was provided with an ultra thin metal rubber laminate between the tool holder and insert. An experimental investigation has been carried out in CNC lathe using a “design of experiments” approach. In this study, vibration of the tool and surface roughness of the workpiece were measured. It has been observed that the vibration of the tool, as well as the tool insert, has been reduced by using ultra thin rubber layered laminates, and the surface finish of the workpiece has been improved.  相似文献   

15.
ABSTRACT

Chatter vibrations in milling, which develop due to dynamic interactions between the cutting tool and the workpiece, result in reduced productivity and part quality. Various numerical and analytical stability models have been considered in the previous publications, where mostly the stability limit of axial depth of cut is emphasized for chatter-free cutting. In this paper an analytical stability model is used, and a simple algorithm to determine the stability limit of radial depth of cut is presented. It is shown that, for the maximization of chatter-free material removal rate, radial depth of cut is of equal importance with the former. A method is proposed to determine the optimal combination of depths of cut, so that chatter-free material removal rate is maximized. The application of the method is demonstrated on a pocketing example where significant reduction in the machining time is obtained using the optimal parameters. The procedure can easily be integrated to a CAD/CAM or virtual machining environment in order to identify the optimal milling conditions automatically.  相似文献   

16.
Ultrasonic-assisted machining is a machining operation based on the intermittent cutting of material which is obtained through vibrations generated by an ultrasonic system. This method utilizes low-amplitude vibrations with high frequency to prevent continuous contact between a cutting tool and a workpiece. Hot machining is another method for machining materials which are difficult to cut. The basic principle of this method is that the surface of the workpiece is heated to a specific temperature below the recrystallization temperature of the material. This heating operation can be applied before or during the machining process. Both of these operations improve machining operations in terms of workpiece-cutting tool characteristics. In this study, a novel hybrid machining method called hot ultrasonic-assisted turning (HUAT) is proposed for the machinability of Hastelloy-X material. This new technique combines ultrasonic-assisted turning (UAT) and hot turning methods to take advantage of both machining methods in terms of machining characteristics, such as surface roughness, stable cutting depths, and cutting tool temperature. In order to observe the effect of the HUAT method, Hastelloy-X alloy was selected as the workpiece. Experiments on conventional turning (CT), UAT, and HUAT operations were carried out for Hastelloy-X alloy, changing the cutting speed and cutting tool overhang lengths. Chip morphology was also observed. In addition, modal and sound tests were performed to investigate the modal and stability characteristics of the machining. The analysis of variance (ANOVA) method was performed to find the effect of the cutting speed, tool overhang length, and machining techniques (CT, UAT, HUAT) on surface roughness, stable cutting depths, and cutting tool temperature. The results show both ultrasonic vibration and heat improve the machining of Hastelloy-X. A decrease in surface roughness and an increase in stable cutting depths were observed, and higher cutting tool temperatures were obtained in UAT and HUAT compared to CT. According to the ANOVA results, tool overhang length, cutting speed, and machining techniques were effective parameters for surface roughness and stable cutting depths at a 1% significance level (p ≤ 0.01). In addition, cutting speed and machining techniques have an influence on cutting tool temperature at a 1% significance level (p ≤ 0.01). During chip analysis, serrated chips were observed in UAT and HUAT.  相似文献   

17.
采用小波包能量熵的铣削振动状态分析方法研究   总被引:1,自引:0,他引:1  
颤振是影响机床加工质量的重要原因之一。为实现切削颤振的实时在线识别与评价,采用加速度传感器,获取主轴振动信号,以小波包能量熵值为指标,对铣削加工的稳定状态及振动形式进行识别。通过多传感器对加工过程进行监测,确定加工的稳定性;对主轴振动信号进行频谱分析,了解不同加工状态下的信号频谱特点,分析其振动形式。对信号进行小波包分解,发现在不同的振动状态下,信号的能量分布有显著规律。试验表明,切削从稳定状态到不稳定状态,本质上是强迫振动和颤振的能量强度和分布发生了变化。能量熵描述能量分布的变化,是识别切削状态和振动状态变化的有效方法。  相似文献   

18.
切削颤振是影响金属切削加工生产率和加工质量的重要因素。建立了金属切削过程的二维颤振数学模型;对颤振的稳定性进行了线性分析和非线性分析;并以颤振位移作为反馈变量,建立了基于二维模糊控制器的颤振控制系统。实验结果表明,该分析与控制对降低加工表面粗糙度具有重要意义。  相似文献   

19.
The problem of chatter vibration is associated with adverse consequences that often lead to tool impairment and poor surface finished in a workpiece, and thus, controlling or suppressing chatter vibrations is of great significance to improve machining quality. In this paper, a workpiece and an actuator dynamics are considered in modeling and controller design. A proportional-integral controller (PI) is presented to control and actively damp the chatter vibration of a workpiece in the milling process. The controller is chosen on the basis of its highly stable output and a smaller amount of steady-state error. The controller is realized using analog operational amplifier circuit. The work has contributed to planning a novel approach that addresses the problem of chatter vibration in spite of technical hitches in modeling and controller design. The method can also lead to considerable reduction in vibrations and can be beneficial in industries in term of cost reduction and energy saving. The application of this method is verified using active damping device actuator (ADD) in the milling of steel.  相似文献   

20.
The problem of chatter vibration is associated with adverse consequences that often lead to tool impairment and poor surface finished in a workpiece, and thus, controlling or suppressing chatter vibrations is of great significance to improve machining quality. In this paper, a workpiece and an actuator dynamics are considered in modeling and controller design. A proportional-integral controller(PI) is presented to control and actively damp the chatter vibration of a workpiece in the milling process. The controller is chosen on the basis of its highly stable output and a smaller amount of steady-state error. The controller is realized using analog operational amplifier circuit. The work has contributed to planning a novel approach that addresses the problem of chatter vibration in spite of technical hitches in modeling and controller design. The method can also lead to considerable reduction in vibrations and can be beneficial in industries in term of cost reduction and energy saving. The application of this method is verified using active damping device actuator(ADD) in the milling of steel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号