首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
采用AB-8型大孔树脂对从鼠曲草中提取的总黄酮产物进行分离纯化研究。考察各种因素对树脂吸附和洗脱效果的影响。通过实验得到最佳吸附工艺条件为上样液流速2BV/h、上样液pH4.5、上样液质量浓度1.7mg/mL;最佳洗脱工艺条件为洗脱液体积分数为60%乙醇、洗脱液流速1BV/h和洗脱液用量1.8BV。分离纯化后的总黄酮产品纯度可达35.42%。  相似文献   

2.
AB-8型大孔吸附树脂分离纯化大叶金花草总黄酮   总被引:3,自引:0,他引:3  
李超  王乃馨  郑义  崔珏  陈华 《食品科学》2011,32(16):31-35
目的:研究AB-8型大孔吸附树脂分离纯化大叶金花草总黄酮的工艺参数,为工业化生产提供依据。方法:通过静态、动态相结合的方法,确定最佳工艺参数。结果:最佳工艺参数为上样液pH4.5、上样液质量浓度1.00mg/mL、上样液流速80mL/h、洗脱液为体积分数70%乙醇溶液、洗脱液流速40mL/h、洗脱液用量60mL,分离纯化后的总黄酮产品纯度可达66.16%。结论:采用AB-8型大孔吸附树脂分离纯化大叶金花草总黄酮操作简单、安全、成本低廉,有较高的应用价值。  相似文献   

3.
以吸附率和解吸率为评价指标,对大孔树脂分离纯化文冠果壳总黄酮的工艺进行优化,并研究纯化后文冠果壳总黄酮的稳定性。结果表明,文冠果壳总黄酮的最佳分离纯化工艺为:采用XAD-1600树脂,上样液pH=4,上样浓度0.5mg/mL,吸附时间6h,上样流速2BV/h,洗脱液流速3BV/h,洗脱液乙醇浓度40%。该条件下,纯化后总黄酮的纯度为(70.15±1.03)%,回收率为(89.63±1.58)%。稳定性试验表明:文冠果壳总黄酮在低温、酸性、避光条件下性质稳定。  相似文献   

4.
以总黄酮吸附量为考察指标,采用分光光度法进行测定,先从D101、AB-8、HPD-400、D001、X-5五种不同类型大孔树脂中筛选出静态分离纯化文冠果落果总黄酮的最佳树脂,再对该树脂进行动态吸附工艺参数研究,以确定其对文冠果落果总黄酮的最优纯化方案。结果表明,HPD-400型大孔树脂对文冠果落果总黄酮分离纯化效果最好,优选工艺条件:上样液浓度0.53 mg/m L,上样液p H3.0,上样体积为1.5 BV,上样流速为3 BV/h;洗脱流速为2 BV/h,去离子水除杂体积2 BV,40%乙醇洗脱液3 BV,产物中总黄酮纯度45.79%。上述采用HPD-400型树脂分离纯化文冠果落果总黄酮效果最好,且具有工艺稳定性。  相似文献   

5.
通过比较D-101、AB-8、X-5、DA-201、HZ-806和HZ-801 6种不同性质大孔吸附树脂对夏枯草果穗总黄酮的静态吸附和解吸附性能,筛选出适合夏枯草果穗总黄酮分离纯化的树脂,并对其进行动态吸附特性研究。静态吸附实验结果表明,弱极性AB-8大孔吸附树脂对夏枯草果穗总黄酮具有较好的吸附和解吸附效果。动态吸附实验得其最佳动态吸附分离工艺参数为:上柱原液pH为3.0~3.5,上柱液体积3BV/次,上柱速度6BV/h,上样液浓度为1.8mg/mL。洗脱液乙醇浓度70%,洗脱液流速6BV/h,洗脱液用量6BV/次。在此条件下,树脂使用1次时,总黄酮吸附率和回收率分别达92.36%和89.09%,总黄酮的纯度由41.58%提高到70.68%;树脂重复使用4次时,总黄酮的收率和纯度仍达80%和60%以上。  相似文献   

6.
AB-8树脂纯化柿叶总黄酮的工艺研究   总被引:1,自引:0,他引:1  
目的:筛选出分离纯化柿叶总黄酮的最佳树脂,并对影响分离纯化的因素进行研究,得到优化的纯化条件。方法:选用AB-8、ADS-17和D3520三种型号大孔吸附树脂,采用动态吸附-解吸方法,利用分光光度法测定黄酮含量,研究了不同的大孔吸附树脂及其不同的工艺条件对柿叶黄酮分离纯化的影响。结果:实验表明AB-8树脂的分离效果最好,其最佳工艺为:上柱液pH6,上柱液流速2BV/h,样液浓度为3mg/mL,70%乙醇为洗脱液,洗脱液流速控制在2BV/h,洗脱液用量为3BV。在此条件纯化后,柿叶黄酮提取物中黄酮含量由9%提高到34%。结论:AB-8大孔树脂可以较好地分离纯化柿叶黄酮。  相似文献   

7.
目的研究ADS系列大孔吸附树脂分离纯化夏枯草穗总黄酮的工艺条件及参数。方法以树脂对夏枯草穗总黄酮的吸附量和洗脱率为指标,筛选ADS系列大孔吸附树脂分离纯化夏枯草穗总黄酮的工艺条件。结果 ADS-8型大孔吸附树脂对夏枯草穗总黄酮有较好的吸附分离性能,该树脂分离纯化夏枯草穗总黄酮的最佳工艺条件为:上柱液pH值5.0,1.20 mg/mL夏枯草提取液以流速2.0 BV/h上柱,洗脱剂乙醇体积分数40%,以1.5 BV/h的流速洗脱,收集洗脱液。经上述工艺纯化后,产品总黄酮含量达82.7%,收率66.2%。结论 ADS-8型大孔吸附树脂适于分离纯化夏枯草穗总黄酮。  相似文献   

8.
研究大孔树脂纯化马兰总黄酮树脂吸附特性及工艺条件及参数。文中分别进行静态吸附、静态解吸、静态吸附动力学过程(Lagergren准一级动力学方程)、静态吸附等温曲线(Langmuir和Freundich等温吸附方程)、动态吸附实验,从7种大孔树脂中筛选用于马兰总黄酮分离的最佳树脂,并系统研究最佳大孔树脂分离纯化的吸附性能和最优洗脱参数。结果表明:D101型大孔树脂为分离马兰黄酮类组分最佳树脂,其分离的最佳工艺为总黄酮浓度为9.36 mg/mL的样液,以3 BV/h的流速,控制pH值为4~5上柱,用75%乙醇以3 BV/h用量进行洗脱,可获得样品总黄酮纯度达70%以上。  相似文献   

9.
大叶藻总黄酮的大孔树脂纯化工艺   总被引:1,自引:0,他引:1  
为纯化大叶藻中提取的总黄酮,选择5 种大孔吸附树脂,通过静态吸附和解吸实验,选定两种最优树脂D101-1和AB-8;再将两种树脂进行混合实验,选出混合吸附树脂最优混合比例,最后确定最佳纯化工艺条件:D101-1和AB-8吸附树脂按2∶3比例混合、上样液pH 3、样液质量浓度1.25 mg/mL、洗脱液乙醇体积分数70%,上样量和上样流速分别为6 BV和3 BV/h,洗脱体积和洗脱流速分别为5 BV和3 BV/h条件下进行纯化实验,样液中的总黄酮含量由原来(12.66±0.42)%上升至(51.25±1.26)%。  相似文献   

10.
大孔树脂分离纯化花生壳总黄酮的研究   总被引:2,自引:0,他引:2  
为了分离纯化花生总壳黄酮,比较了8种大孔树脂的静态吸附过程,筛选出了适合吸附花生壳总黄酮的树脂。研究了花生壳总黄酮在大孔吸附树脂上的动态吸附特性,并确定分离花生壳总黄酮的适宜工艺条件。结果表明:AB-8大孔树脂对花生壳总黄酮有较好的吸附分离性能,其对花生壳总黄酮的静态吸附平衡时间为4 h;AB-8型大孔树脂对花生壳总黄酮有较好的吸附和解吸效果;较优的吸附分离工艺参数为:样液pH值6.0,上样液流速1 mL/m in,上样液质量浓度0.5 mg/mL,用70%乙醇洗脱时,解吸率达94.23%,3 BV洗脱液基本上能将花生壳总黄酮洗脱下来。  相似文献   

11.
华中枸骨叶总黄酮的纯化及其抑菌活性研究   总被引:1,自引:0,他引:1  
以吸附率、解吸率、回收率为考察指标,在单因素实验基础上,采用正交设计优化D101大孔树脂纯化华中枸骨叶总黄酮的工艺条件。同时采用牛津杯法,考察纯化前后的提取物对常见细菌的体外抑菌作用。D101大孔吸附树脂纯化华中枸骨叶总黄酮的最佳工艺条件为:总黄酮质量浓度为0.735 mg/mL,pH为1.93,3 BV上样液,径高比1:8.5,上样速度6 BV/h,上样完毕后,静置30 min;洗脱时,先用3 BV去离子水,再用70%乙醇8 BV,洗脱流速6 BV/h,得到总黄酮回收率为91.06%,总黄酮质量分数从48.52%增长到78.26%。体外抑菌结果显示:华中枸骨叶总黄酮纯化物对金黄色葡萄球菌、大肠埃希菌、铜绿假单胞菌、宋内志贺菌的抑菌圈分别为14.07、17.15、7.12、7.57 mm。除大肠埃希菌外,对于其他3种菌的抑菌效果均是粗提物好于纯化物。  相似文献   

12.
元宝枫黄酮的精制   总被引:3,自引:0,他引:3  
选择8种大孔吸附树脂,比较其对元宝枫黄酮的吸附率和解吸率,筛选较优的一种并对其动态吸附及解吸性能进行了考察。结果表明,DM 130树脂对元宝枫黄酮有较好的吸附和解吸性能。最佳工艺参数:上样浓度可控制在1 2~2 3mg/mL ,上样液pH控制在4~5内,上样速率控制在1~2BV/h ,解吸剂用体积分数70 %乙醇,流速1BV/h ,可在3BV内基本解吸黄酮。  相似文献   

13.
赵月  李荣  姜子涛 《食品科学》2016,37(16):36-42
通过响应面法确定超声-微波协同萃取栽培菊苣籽总黄酮的最佳条件为:液料比40∶1(mL/g)、乙醇体积分数71%、提取温度65 ℃、微波功率400 W、超声功率50 W、提取时间6 min。在此条件下,测得栽培菊苣籽中黄酮的含量为93.23 mg/g。通过动态纯化的方式确定AB-8大孔树脂纯化菊苣籽总黄酮的条件为:上样液pH 4、上样液和洗脱液流速2 BV/h、洗脱液乙醇体积分数70%。高效液相色谱(high performance liquid chromatography,HPLC)分析结果显示,栽培菊苣籽总黄酮主要是由绿原酸和洋蓟素两种化合物构成。离线1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)-HPLC法显示,洋蓟素比绿原酸对DPPH自由基具有更强的抗氧化活性,二者对游离基的清除率分别为64.11%和61.65%。  相似文献   

14.
目的:研究大孔吸附树脂分离纯化桃花多酚的最佳工艺条件。方法:比较了6种大孔吸附树脂对桃花多酚的静态吸附与解吸性能,筛选出最佳树脂并对其进行动态吸附、解吸实验,确定最佳纯化桃花多酚工艺条件。结果:D-101树脂具有较好的吸附解吸效果。最佳工艺为:上样浓度约为0.744mg/mL,上样流速1BV/h,上样体积4.5BV,先用去离子水洗至洗脱液无色,再用80%乙醇以1BV/h的流速进行洗脱,洗脱液用量约3BV。该条件下桃花多酚的质量分数可从6.17%提高到29.30%±3.04%,桃花多酚的总收率达79.01%±3.39%。结论:该方法简单可行,效果较好,可满足工业生产要求。  相似文献   

15.
采用超声波萃取法,研究油茶叶黄酮类化合物的提取工艺,从而为油茶树叶工业化提取黄酮类功能性成分提供科学依据。通过单因素和正交试验确定了超声波功率、乙醇体积分数及提取时间、料液比的最佳参数。结果表明,超声波功率450W、乙醇体积分数60%、提取时间为20min,料液比为1∶20提取效果最佳。在此条件下,老叶中的黄酮类化合物含量>中叶中的黄酮类化合物含量>嫩叶中的黄酮类化合物含量。选用AB-8大孔树脂对油茶叶黄酮提取液进行分离纯化。选择上样速度为3BV/h,上液浓度为2.0mg/mL进行吸附,选择3BV90%的乙醇浓度和1.5BV/h的洗脱流速进行解吸试验。提取液经纯化后,黄酮类含量从13.1%提高到27.2%,提高了2.08倍。  相似文献   

16.
大孔树脂纯化笋壳中的黄酮物质   总被引:1,自引:0,他引:1       下载免费PDF全文
通过比较5种大孔吸附树脂对笋壳黄酮的吸附分离性能,筛选出适合分离笋壳黄酮的树脂,并对其动态吸附特性进行研究。结果表明:HPD600树脂对笋壳黄酮不仅吸附量大,而且解吸率高,适合笋壳黄酮的分离富集。其分离笋壳黄酮的工艺参数为:上样质量浓度为3.89 mg/mL,pH 3.0,上样量为7 BV,流速3 BV/h;用6 BV的体积分数40%乙醇洗脱,解吸效果最佳,黄酮总回收率为82.33%,可得总黄酮质量分数为35.12%的笋壳提取物粉末。  相似文献   

17.
大孔树脂对荷叶黄酮的分离纯化   总被引:2,自引:1,他引:1       下载免费PDF全文
荷叶富含黄酮,可加以开发利用。为了得到新的黄酮制备工艺,以荷叶为原料,采用超滤法处理荷叶乙醇浸提液,去除大分子量物质。选用HZ系列四种新型大孔吸附树脂,采用静态吸附试验对大孔吸附树脂进行筛选。以超滤液作为样品液,对筛选得到的吸附树脂,用动态吸附解吸试验选择优化了吸附解吸操作条件。结果表明,HZ-806大孔吸附树脂对荷叶黄酮的吸附性能与解吸效果最好。选定HZ-806的吸附条件为:上柱液pH4.0,上柱液浓度2.0mg/mL,上柱液体积10BV(BV为树脂柱体积)、上柱流速2BV/h。洗脱条件为:乙醇浓度60%,洗脱流速1BV/h,洗脱液体积为3.5BV。在上述优化条件下经过超滤处理过的上柱液从吸附到解吸操作荷叶黄酮总得率96.85%。荷叶黄酮含量从27.06%提高到61.91%,其中占总黄酮的91.98%洗脱组分,纯度达到81.58%;HPLC检测表明荷叶黄酮中芦丁上柱前后含量从7.03%提高到27.93%。说明该工艺是获取荷叶黄酮有效精制、分离方法。  相似文献   

18.
为了分离、纯化锁阳总黄酮,比较了5种大孔树脂的静态吸附过程,筛选出了适合分离锁阳总黄酮的树脂。结果表明,AB-8树脂对锁阳总黄酮有较好的分离纯化效果,其吸附过程可用Langmuir和Freundlich吸附等温式来描述;吸附条件:溶液质量浓度3.9 mg/mL,pH值为5,吸附体积5 BV,流速2 BV/h,温度25 ℃;洗脱条件:体积分数为60%乙醇洗脱体积5 BV,体积分数为70%乙醇洗脱体积10 BV,流速2 BV/h,锁阳总黄酮纯度由9.83%升高至67.8%,其回收率为84.02%。因此,AB-8大孔树脂较适合分离纯化锁阳总黄酮。  相似文献   

19.
通过比较11种大孔吸附树脂对胡芦巴黄酮类化合物的静态吸附与解吸性能,筛选出DM130型大孔吸附树脂用于分离纯化胡芦巴种子中的黄酮类化合物。采用单因素方法分析该树脂富集纯化胡芦巴总黄酮的适宜工艺条件,确定优化的工艺条件为:上样量为3.64 mg黄酮/g树脂,上样液pH值5.0,吸附时间2 h,体积分数70%乙醇洗脱,洗脱速率2 mL/min,洗脱体积为150 mL,总黄酮回收率为85.05%,提取物中黄酮含量由7.8%提高到26.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号