首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of roasting and aqueous extraction conditions for oil recovery from wild almond were optimized using response surface methodology (RSM). Optimum conditions for oil extraction were obtained at 142 °C roasting temperature, 16.5 min roasting time, 5.67 extraction pH and 4.6 h extraction time. Under these conditions, the extraction yield of 34.5% (w/w, based on the original weight of the sample) was obtained, which is equivalent to 80.0% of the total oil in the kernel. This was lower than that obtained by hexane Soxhlet (HS) extraction (43.1%, w/w, considered as 100% of total oil) but higher than that of cold pressing (CP) (18.5%, w/w; i.e., 42.9% of total oil). The refractive indices and saponification values of the oils were not affected by the extraction method. However, fatty acid and tocopherol compositions and DPPH radical scavenging capacities as well as unsaponifiable matter, iodine, peroxide and acid values of the obtained oils were impacted by the extraction method. The results showed that the quality attributes (omega-6 fatty acid content, peroxide and acid values, total tocopherol contents and antioxidant activity) of the oil obtained by AEP were somewhat similar to those of the oil extracted by CP and much superior to those of the oil obtained by HS.  相似文献   

2.
The effects of different heat treatment methods on the extraction yield of oil and the amygdalin contents of the wild almond meal and oil were investigated. When using hexane as a solvent for the extraction, oil yield and amygdalin contents of the extracted oils increased by increasing the applied temperature as the pretreatment (46.1–51.6%, w/w, for oil yield and 26–49 mg/100 mL oil for the amygdalin content). When using mechanical oil extraction, hot-press resulted in higher oil yield (23.2%) than did the cold-press (15.6%) but the amygdalin levels of the extracted oils were not significantly different (12.8–12.9 mg/100 mL oil). Autoclaving ground wild almond and hot-press resulted in a significant increase in the peroxide and acid values of the oils. Investigation of fatty acid profiles of different samples showed that heat treatment and extraction method in this study did not impact the fatty acid profiles of the extracted oils.  相似文献   

3.
This study details the enzymatic destabilization of the emulsion formed during aqueous extraction of peanut seeds and the quality of the resulting oil. The emulsion was exposed to enzymatic treatment and pH adjustment. The experimental results suggest that the alkaline endopeptidase Mifong®2709 was the most effective demulsifier, while Phospholipase A2 and pH adjustment had little effect on emulsion stability. The demulsifying conditions of Mifong®2709 were optimized by response surface methodology (RSM). The optimal conditions which produced a free oil yield of ~94 % were: 1:1 water-to-emulsion ratio, enzyme concentration of 1,600 IU/g of emulsion and 70 min hydrolysis time at 50 °C. We found that these conditions resulted in a positive relationship (R 2 = 0.9671) between free oil yield and the degree of protein hydrolysis. Increased protease treatment produced a smaller number of oil droplets, but the size of these droplets increased significantly. When compared to demulsified oil products obtained by using thermal treatment, the oil obtained by Mifong®2709 exhibited lower acid and peroxide values, contained more tocopherols and had a longer induction time as determined in the Rancimat test. The high yield and quality of peanut oil obtained by enzymatic treatment makes enzyme demulsification a promising approach to recovering free oil in aqueous extractions of peanuts.  相似文献   

4.
The effects of two commercial endoproteases (Protex 6L and Protex 7L, Genencor Division of Danisco, Rochester, NY, USA) on the oil and protein extraction yields from extruded soybean flakes during enzyme-assisted aqueous extraction processing (EAEP) were evaluated. Oil and protein were distributed in three fractions generated by the EAEP: cream + free oil, skim and insolubles. Protex 6L was more effective for extracting free oil, protein and total solids than Protex 7L. Oil and protein extraction yields of 96 and 85%, respectively, were obtained using 0.5% Protex 6L. Enzymatic and pH treatments were evaluated to de-emulsify the oil-rich cream. Cream de-emulsification generated three fractions: free oil, an intermediate residual cream layer and an oil-lean second skim. Total cream de-emulsification was obtained when using 2.5% Protex 6L and pH 4.5. The extrusion treatment was particularly important for reducing trypsin inhibitor activity (TIA) in the protein-rich skim fraction. TIA reductions of 69 and 45% were obtained for EAEP skim (the predominant protein fraction) from extruded flakes and ground flakes, respectively. Protex 6L gave higher degrees of protein hydrolysis (most of the polypeptides being between 1,000 and 10,000 Da) than Protex 7L. Raffinose was not detected in the skim, while stachyose was eliminated by α-galactosidase treatment.  相似文献   

5.
Wild almond Amygdalus scoparia is a very fruitful tree that is spread over an extensive region of Iran. Considering its high quality oil, the development of clean extraction processes based on the use of compressed fluids is encouraged. In this study, the main factors involved in supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE) of wild almond have been optimized by using two different experimental designs and considering the oil extraction yield as a response variable; effects of time, temperature, pressure, and use of co‐solvents were studied for SFE while effects of time, temperature and type of solvent were evaluated for PLE. Results showed that the maximum oil yield using supercritical carbon dioxide was 42 %, obtained under the following conditions: extraction temperature, 40 °C; extraction pressure, 40 MPa; and 10 % ethanol as co‐solvent. The optimum extraction yield for PLE was 55 %, which was achieved using ethanol as solvent at 150 °C for 20 min. Lipidomic analysis revealed that the amount of oleic acid in the oil extracted by SFE was higher than those obtained by using other classical procedures. In addition, triacylglycerols constituted more than 98 % of the extracted oils.  相似文献   

6.
A one-step method was developed to extract oil from a mixture of soybeans, peanuts, linseeds, and tea seeds using an aqueous enzymatic method. The proportion of the four seeds was targeted in accordance with a fatty acid ratio of 0.27 (SFA, saturated fatty acid(s)): 1 (MUFA, monounsaturated fatty acid(s)): 1 (PUFA, polyunsaturated fatty acid(s)), and the oil extraction yield was maximized by applying the simplex-centroid mixture design method. Three models were developed for describing the relationship between the proportion of the individual seeds in the mixture, the fatty acid ratio in the extracted oil, and the oil extraction yield, respectively. The developed models were then analyzed using an ANOVA and were found to fit the data quite well, with R 2 values of 0.98, 0.93, and 0.93, respectively. The three models were validated experimentally. The results indicated that the ratio of fatty acids in the oil ranged between 0.98 and 1.12 (MUFA:PUFA) and between 0.26 and 0.28 (SFA:MUFA), which were quite close to the target values of 1 and 0.27, respectively. The oil extraction yield of 62.13 % was slightly higher than the predicted value (60.32 %).  相似文献   

7.
Wild almond (Amygdalus scoparia) oil is rich in oleic acid and, considering both nutritional and stability points of view, it can be utilized for future food applications. In the current study, acid degumming was investigated based on a method by response surface methodology using four degumming parameters, namely the amount of phosphoric acid (0.0–0.2%, w/w), the amount of water (1.0–5.0%, w/w), degumming temperature (30–70 °C), and degumming time (10–50 min). Optimum conditions for the minimum phosphorus level in the oil were found to be 0.15% phosphoric acid, 3.0% water, 40 °C degumming temperature, and 28 min degumming time, resulting in an almost complete removal of phosphorus. The final degummed wild almond oil had less than 1 mg kg−1 phosphorus (reduced from an original value of 206 mg kg−1). The experimental value of phosphorus reduction at optimum conditions agreed well with that predicted by the model. Peroxide value, anisidine value, iron, copper, and lead contents, phytosterols, unsaponifiable matter, and color of the oil decreased significantly during the degumming process; however, the fatty acid composition did not change. Also, degumming did not significantly impact the free fatty acid level, refractive index, density, iodine value, and the saponification value of the oil. However, tocopherols and the oxidative stability of the oil increased during degumming. Crude wild almond oil contained a trace level of amygdalin, which was completely eliminated during the degumming process.  相似文献   

8.
An aqueous enzymatic extraction method was developed to obtain free oil and protein hydrolysates from dehulled rapeseeds. The rapeseed slurry was treated by the chosen combination of pectinase, cellulase, and β-glucanase (4:1:1, v/v/v) at concentration of 2.5% (v/w) for 4 h. This was followed by sequential treatments consisting of alkaline extraction and an alkaline protease (Alcalase 2.4L) hydrolysis to both produce a protein hydrolysate product and demulsify the oil. Response surface methodology (RSM) was used to study and optimize the effects of the pH of the alkaline extraction (9.0, 10.0 and 11.0), the concentration of the Alcalase 2.4L (0.5, 1.0 and 1.5%, v/w), and the duration of the hydrolysis (60, 120, and 180 min). Increasing the concentration of Alcalase 2.4L and the duration of the hydrolysis time significantly increased the yields of free oil and protein hydrolysates and the degree of protein hydrolysis (DH), while the alkaline extraction pH had a significant effect only on the yield of the protein hydrolysates. Following an alkaline extraction at pH 10 for 30 min, we defined a practical optimum protocol consisting of a concentration of 1.25–1.5% Alcalase 2.4L and a hydrolysis time between 150 and 180 min. Under these conditions, the yields of free oil and protein hydrolysates were 73–76% and 80–83%, respectively. The hydrolysates consisted of approximately 96% of peptides with a MW less than 1500, of which about 81% had a MW less than 600 Da.  相似文献   

9.
An ethanol-assisted aqueous enzymatic extraction was performed for peony seed oil (content of 30%). This method included cooking pretreatment, pectinase hydrolysis, and aqueous ethanol extraction, and the corresponding variables in each step were investigated. The changes in viscosity and dextrose equivalent values of the reaction medium as a function of changing enzymatic hydrolysis time were compared to the oil yield. The microstructures of peony seeds were analyzed using confocal laser scanning microscopy to understand the process of oil release as a result of cooking and grinding. The highest oil yield of 92.06% was obtained when peony seeds were cooked in deionized water with a solid–liquid ratio of 1:5 (w/v) at 110°C for 1 hour, ground to 31.29 μm particle size, treated with 0.15% (w/w) pectinase (temperature 50°C, pH 4.5, time 1 hour), and then extracted with 30% (v/v) aqueous ethanol (temperature 60°C, pH 9.0, time 1 hour). After processing with pectinase followed by ethanol extraction, the residual oil content in water and sediment phase decreased to 5% and 3%, respectively. The quality of the oil obtained by ethanol-assisted aqueous enzymatic extraction was good, complying with the Chinese standard.  相似文献   

10.
Enzyme-assisted aqueous extraction processing (EAEP) is an increasingly viable alternative to hexane extraction of soybean oil. Although considered an environmentally friendly technology where edible oil and protein can be simultaneously recovered, this process employs much water and produces a significant amount of protein-rich aqueous effluent (skim). In standard EAEP, highest oil, protein and solids yields are achieved with a single extraction stage using 1:10 solids-to-liquid ratio (extruded flakes/water), 0.5% protease (wt/g extruded flakes), pH 9.0, and 50 °C for 1 h. To reduce the amount of water used, two-stage countercurrent EAEP was evaluated for extracting oil, protein and solids from soybeans using a solids-to-liquid ratio of 1:5–1:6 (extruded flakes/water). Two-stage countercurrent EAEP achieved higher oil, protein and solids extraction yields than using standard EAEP with only one-half the usual amount of water. Oil, protein and solids yields up to 98 and 96%, 92 and 87%, and 80 and 77% were obtained when using two-stage countercurrent EAEP (1:5–1:6) and standard single-stage EAEP (1:10), respectively. Recycling the second skim obtained in two-stage countercurrent EAEP enabled reuse of the enzyme, with or without inactivation, in the first extraction stage producing protein with different degrees of hydrolysis and the same extraction efficiency. Slightly higher oil, protein and solids extraction yields were obtained using unheated skim compared to heated skim. These advances make the two-stage countercurrent EAEP attractive as the front-end of a soybean biorefinery.  相似文献   

11.
A bench-scale aqueous enzymatic method was developed to extract corn oil from corn germ from either a commercial corn dry mill or corn germ from a newly-developed experimental enzymatic wet milling process (E-Germ). With both types of germs, no oil was extracted when acidic cellulase was the only enzyme used. Pre-treating dry milled corn germ by heating it in boiling water or microwave pretreatment, followed by enzymatic extraction with the acidic cellulase resulted in oil yields of about 43% and 57%, respectively. A two-step process, combining both acidic cellulase and alkaline protease treatments, with no heat pretreatment, achieved oil yields of 50–65% from dry milled corn germ and 80–90% from E-Germ. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

12.
Characterization and destabilization of the emulsion formed during aqueous extraction of oil from soybean flour were investigated. This emulsion was collected as a cream layer and was subjected to various single and combined treatments, including thermal treatments and enzymatic treatments, aimed at recovery of free oil. The soybean oil emulsion formed during the aqueous extraction processing of full fat flour contains high molecular weight glycinin and β-conglycinin proteins and smaller oleosin proteins, which form a multilayer interface. Heat treatment alone did not modify the free oil recovery but freeze–thaw treatment increased the oil yield from 3 to 22%. After enzymatic treatment of the emulsion, its mean droplet size changed from 5 to 14 μm and the oil recovery increased to 23%. This increase could be attributed to the removal (due to enzymatic hydrolysis) of large molecular weight polypeptides from the emulsion interface, resulting in partial emulsion destabilization. When enzymatic treatment was followed by a freeze–thaw step, the oil recovery increased to 46%. This result can be attributed to the thinner interfacial membrane after enzymatic hydrolysis, partial coalescence during freeze–thaw, and coalescence during centrifugation. Despite the reduction in emulsion stability achieved, additional demulsification approaches need to be pursued to obtain an acceptably high conversion to free oil.  相似文献   

13.
Response surface methodology employing a five-level, four-variable central composite rotatable design was applied to study the effects of extraction time, extraction temperature, pH and water/solid ratio on the extraction yield of pomegranate seed oil using an aqueous extraction approach. In addition, quality indices, fatty acid composition and antioxidant activity of the obtained oil were studied and compared with those of typical hexane-, cold press- and hot press-extracted oil. Aqueous extraction resulted in the maximum oil recovery of 19.3% (w/w), obtained under the following critical values: water/solid ratio (2.2:1.0, mL/g), pH 5.0, extraction temperature = 63 °C and extraction time = 375 min. This yield is lower than that obtained via hexane extraction (26.8%, w/w) and higher than the yields from cold press (7.0%, w/w) and hot press (8.6%, w/w) extraction. A comparison of the characteristics of the oils based on extraction method revealed that the unsaturated fatty acid content was highest for the oil obtained by aqueous extraction. In addition, higher levels of iodine and peroxide and lower levels of acid, p-anisidine and unsaponifiable matter were observed. The oil obtained with aqueous extraction also exhibited higher antioxidant activity than oils obtained by hexane or hot press extraction.  相似文献   

14.
Separating Oil from Aqueous Extraction Fractions of Soybean   总被引:6,自引:0,他引:6  
Previous research has shown that enzyme-assisted aqueous extraction processing (EAEP) extracts 88–90% of the total soybean oil from extruded full-fat soy flakes into the aqueous media, which is distributed as cream (oil-in-water emulsion), skim, and free oil. In the present work, a simple separatory funnel procedure was effective in separating aqueous skim, cream and free oil fractions allowing mass balances and extraction and recovery efficiencies to be determined. The procedure was used to separate and compare liquid fractions extracted from full-fat soy flour and extruded full-fat soy flakes. EAEP extracted more oil from the extruded full-fat soy flakes, and yielded more free oil from the resulting cream compared to unextruded full-fat soy flour. Dry matter partitioning between fractions was similar for the two procedures. Mean oil droplet sizes in the cream and skim fractions were larger for EAEP of extruded flakes compared to non-enzymatic AEP of unextruded flour (45 vs. 20 μm for cream; 13 vs. 5 μm for skim) making the emulsions from EAEP of extruded flakes less stable. All major soy protein subunits were present in the cream fractions, as well as other fractions, from both processes. The cream could be broken using phospholipase treatments and 70–80% of total oil in the extruded full-fat flakes was recovered using EAEP and a phospholipase de-emulsification procedure.  相似文献   

15.
水酶法提取大豆油   总被引:1,自引:0,他引:1       下载免费PDF全文
The procedure of enzymatic aqueous extraction of soybean oil was assessed when two-step controlled enzymatic hydrolysis was applied. With aqueous extraction of soybean oil-containing protein, the highest yield of oil was 96.1% at the optimized conditions studied. Soybean oil-containing protein was hydrolyzed and resulted in releasing part of oil. The separated protein that contained 40% oil was enriched due to its adsorption capacity of released oil, the average oil extraction yeild reached 93.5%. Then the high oil content protein was hydrolyzed again to release oil by enzyme, the oil extraction yeild was 80.4%. As a result, high quality of soybean oil was obtained and the content of total oil vield was 74.4%.  相似文献   

16.
Activated carbons (ACs) are prepared from wild almond shells (AS) and coir pith (CP) using phosphoric acid as an activating agent. Various process parameters like acid concentration, impregnation ratio, activation temperature, and time are optimized for better iodine adsorption capacity and yield. The impregnation ratio and the activation temperature are found to be the key parameters governing the porosity, surface area, and the yield of AC. The Brunauer-Emmett-Teller (BET) analysis of ACs shows that the surface areas are 1133.25 and 1210.58 m2/g with the yields of 32.8 and 40.7%, respectively, produced from wild AS and CP. The maximum adsorption capacities for methylene blue are as high as 788.88 and 708.33 mg/g. The equilibrium data is best described by the Langmuir and the Temkin isotherm, while the adsorption follows second-order kinetics, indicating that the intraparticle diffusion is one of the rate-controlling steps.  相似文献   

17.
The economic viability of enzyme-assisted aqueous extraction processing (EAEP) of soybeans depends on properties and potential applications of all fractions (skim and insolubles as well as oil). EAEP oil contained lower free fatty acid, phosphorus, and tocopherol contents, similar unsaponifiable matter levels, and higher degrees of oxidation (peroxide and p-anisidine values) than hexane-extracted oil. The phospholipid profile of EAEP fractions was mainly composed of phosphatidic acid, followed by phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine. Most of phospholipids were present in the skim, except for phosphatidic acid, which was the major phospholipid in the cream fraction. Skim and cream contained 55 and 3 % of the soluble carbohydrates in the original extruded flakes, respectively. Soluble carbohydrates of the skim were mainly composed of stachyose (5.8 ± 0.8 mg/mL) and sucrose (9.9 ± 0.8 mg/mL), which were hydrolyzed into glucose, galactose, and fructose after addition of α-galactosidase. Skim and cream peptides contained <20 kDa MW molecules. About 71 % of the skim peptides were <20 kDa MW, with 49 % being <1.35 kDa MW, 22 % being 17–1.35 kDa MW, and 29 % being 44–670 kDa MW. Skim protein and carbohydrate contents make this fraction suitable for replacing water in ethanol fermentations, thereby improving the fermentation rate/production and the nutritional quality of distiller’s dried grains with solubles.  相似文献   

18.
Downstream processes following aqueous enzymatic extraction (AEE) of rapeseed oil and protein hydrolysates were developed to enhance the oil and protein yields as well as to purify the protein hydrolysates. The wet precipitate (meal residue) from the AEE was washed with twofold water at 60 °C, pH 11 for 1 h. Emulsions from the AEE and the washing step were pooled and submitted to a stepwise demulsification procedure consisting of storage-centrifugation and freezing–thawing followed by centrifugation. Aqueous phases were pooled and adsorbed onto macroporous adsorption resins (MAR) to remove salts and sugars. Following extensive rinsing with deionized water (pH 4), desorption was achieved by washing with 85% ethanol (v/v) to obtain crude rapeseed peptides (CRPs). In a separate experiment, stepwise desorption was carried out with 25, 55, and 85% ethanol to separate the bitter peptides from the other peptides. Using a combination of the AEE process, washing and demulsification steps, the yields of the total free oil and protein hydrolysates were 88–90% and 94–97%, respectively. The protein recovery was 66.7% and the protein content was enriched from 47.04 to 73.51% in the CRPs. No glucosinolates and phytic acid were detected in the CRPs. From the stepwise desorption, a non-bitter fraction RP25 (containing 64–66% of total desorbed protein) had a bland color and significantly higher protein content (81.04%) and hence was the more desirable product.  相似文献   

19.
《分离科学与技术》2012,47(17):3363-3373
Abstract

Extraction of the bitumen fraction of El-Lajjun oil shale was carried out using 17 different solvents, pure and combined. Out of all the solvents used, toluene and chloroform were found to be the most efficient for extraction of the bitumen to perform the major part of the experiments. This selectivity was based on the quality and quantity of the yield and on the quantity of solvent recovered. Extraction was carried out using a Soxhlet extractor. For complete recovery of solvent the extract phase was subjected to two stages of distillation, simple distillation followed by fractional distillation, where different cuts of oil were obtained. It was found that an optimum shale size of 1.0 mm offered better solvent recovery. One hour was the optimum time needed for complete extraction. The yield of oil was determined from the material balance gained from fractional distillation after testing for the existence of any traces of solvent trapped in the different cuts by using a gas chromotography technique. When chloroform was used, it was found that the average amount of bitumen extracted was 0.037 g/g of shale, which corresponds to 98% of the actual bitumen trapped in the oil shale (by assuming the bitumen represents 15% of the organic matter) and 84.1% of solvent recovered. When toluene was used, it was found that the average amount of oil extracted was 0.0293 g/g of shale, which corresponds to 78% of the actual bitumen trapped in the oil shale (by assuming bitumen represents 15% of the organic matter) and 89.9% of solvent for extraction with toluene.  相似文献   

20.
Multi‐enzymatic catalysis combined with acid hydrolysis is studied in order to enhance the efficiency of the enzymatic catalysis and reduce the mass transfer resistance from starch and cellulose in the extraction of diosgenin from Dioscorea zingiberensis C. H. Wright. The cellulase is modified by polyethylene to increase its optimal reaction temperature and pH value. The modified cellulase shows better thermostability and resistance to alkali. The modified cellulase, α‐amylase and β‐glycosidase are used to construct the multi‐enzyme and multi‐enzyme catalysis is used as a pretreatment process. Compared to primary industrial techniques including acid hydrolysis, spontaneous fermentation and enzymatic catalysis, conventional techniques are optimized by using multi‐enzymatic catalysis together with acid hydrolysis because of the higher reaction efficiency and lower levels of manipulation required. The purity of the product is more than 96 % with this technique, and the melting point is 205–207 °C. The diosgenin yield rate and the extraction rate reached are 2.43 % and 98 %, respectively. IR and 1H NMR spectroscopy were used to confirm the structure of the product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号