首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
The mechanical properties of fat–oil mixtures are dictated by the morphology of the fat crystal network, which in turn is strongly affected by the processing conditions. In this work the effect of uniform (linear) cooling rates on the size and shape of tribehenin (fat) clusters in isopropyl myristate (oil) was studied. The state of the fat–oil mixtures was comprehensively analyzed by establishing pseudo‐phase diagrams via visual observations, brightfield and polarization microscopy at various cooling rates and fat concentrations. The microstructure of the constituent fat clusters undergo a shape transition from bundles of needles at low cooling rates to spherical clusters at high cooling rates. The network structures formed with these different shaped fat clusters were examined using rheology. At a given cooling rate, the storage modulus (G?) of fat–oil mixtures versus fat concentration followed a power law relationship. For a given fat concentration, the fat crystal networks comprising of bundles of needles showed higher G? values as compared to fat networks made of spherical clusters. While the fractal dimension of networks cooled at different cooling rates varied over a small range of 2.78–2.86, considerable change in the pre‐exponential factor (γ) was observed. The results show the critical importance of processing conditions on the shape and size of fat clusters and its impact on the rheological properties of the fat crystal network.  相似文献   

2.
In this study, two different groups of fat samples were prepared in a way that samples of each group had different trans fatty acid (TFA) composition but similar solid fat content (SFC). Samples of the first group (named group A) had TFA between 0.0 and 56.23 %, while the samples of the second group (group B) contained trans isomers ranging from 0.0 to 44.4 %. A polarized microscope was used to monitor the differences between the samples in terms of crystal size and crystal number during isothermal crystallization. In general, increasing TFA resulted in formation of larger crystals in a shorter time. Similar findings were also observed when small deformation time and frequency sweep experiments were conducted. A higher TFA content led to higher complex modulus values during isothermal crystallization. On the other hand, when the samples were stored at 4 °C for 48 h, the samples with the lower trans isomer had higher hardness values.  相似文献   

3.
A variety of polymer parts used in microsystems technology is produced by injection molding. For dimensioning and design of these products, both the material properties and changes during the life cycle have to be taken into account. The aging behavior of parts with decreasing dimensions or of parts processed under different cooling conditions is discussed in terms of their morphological and mechanical long‐term properties. The results indicate that a decreasing part size leads to higher post‐crystallization and higher thermo‐oxidative degradation. This leads to size‐dependent changes in mechanical properties. Adjusted process conditions by application of thermal low‐conductive mold materials can favor the process‐related properties and thus the long term properties can be improved.

  相似文献   


4.
Surfactant flooding is one of the most promising techniques to recover oil from unprofitable reservoirs. Surface‐active ionic liquids can overcome the limitations of the current surfactants. The rheology of the injecting solutions and the formed slugs is critical in the evaluation of an enhanced oil recovery process. The thermo‐rheological behavior of a biodegradable surface‐active ionic liquid, [ProC4]DS, and the corresponding binary and ternary mixtures with water and n‐octane was studied. All flow curves exhibited shear‐thinning and thixotropic behavior. The viscoelastic behavior of the ternary samples depended strongly on the [ProC4]DS content. Three different regions were identified: typical liquid‐like behavior, weak gel, and true gel. The thermal profiles indicated that the tested systems were fully thermoreversible.  相似文献   

5.
6.
Branched and linear polyacetals prepared by cationic bulk polymerization were molded under high‐injection rate and pressure, and the resultant 1‐mm‐thick specimens were investigated regarding the crystalline morphology, mechanical properties, and transparency. The branched polyacetal exhibited shear‐induced transformation of crystalline morphology, namely, the spherulites, the elongated spherulites, and shish‐kebab morphology parallel to the flow direction, with increasing shear viscosity. The degree of orientation of the branched polyacetal, calculated from the intensity distribution on the Debye ring of the (100) diffraction by WAXS, linearly and significantly increased with the increase of the logarithm of the shear viscosity. The difference of the crystalline morphology greatly influenced the mechanical properties and transparency of the branched and linear polyacetals. The branched polyacetal with the shish‐kebab morphology had approximately 20% higher tensile strength and modulus as compared with those with the spherulites morphology, and showed translucent with a higher light transmittance over a wide range of wavelength of incident light. The results indicate that a large number of fibrous crystals in the shish‐kebab morphology result in the self‐reinforcement of specimens parallel to the flow direction and diminishment of the scattering of incident light. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3182–3392, 2006  相似文献   

7.
Two series of polyurethanes were synthesized using one‐ and two‐step reactions in a bulk phase at 175 °C with polycaprolactone diol, butane‐1,4‐diol, and 4,4‐diphenylmethane diisocyanate (MDI) in a suspension of starch granules to observe cross‐linking phenomena. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC) analysis, and complex viscosity η*(ω), storage G′(ω), and loss‐modulus G″(ω) as rheological measurements, were carried out to characterize the cross‐linking in the polyurethane incorporated with starch. SEM micrographs indicated that grafted polyurethane was cross‐linked between starch granules forming a three‐dimensional network. The plots of η* against ω, and log G′ against log G″ showed that the starch content increased cross‐linking, so as to induce gelation (G′G″). However, the cross‐linked networking was decreased over the higher range of starch contents (> 33 wt.‐% for the low hard‐segment series, psb2m3 and > 27 wt.‐% for the high hard‐segment series, psb4m5). Cross‐linking is also enhanced in the high hard‐segment series compared to the low hard‐segment series. Increasing the catalyst concentration also enhanced the cross‐linking inside of the polyurethane phase.

Plots of η* against ω for p7s3b4m5(OSR C0.01) and p7s3b4m5(TSR C0.01).  相似文献   


8.
The influence of catalyst pre-treatment temperature (650 and 750 °C) and oxygen concentration (λ = 8 and 1) on the light-off temperature of methane combustion has been investigated over two composite oxides, Co3O4/CeO2 and Co3O4/CeO2–ZrO2 containing 30 wt.% of Co3O4. The catalytic materials prepared by the co-precipitation method were calcined at 650 °C for 5 h (fresh samples); a portion of them was further treated at 750 °C for 7 h, in a furnace in static air (aged samples).

Tests of methane combustion were carried out on fresh and aged catalysts at two different WHSV values (12 000 and 60 000 mL g−1 h−1). The catalytic performance of Co3O4/CeO2 and Co3O4/CeO2–ZrO2 were compared with those of two pure Co3O4 oxides, a sample obtained by the precipitation method and a commercial reference. Characterization studies by X-ray diffraction (XRD), BET and temperature-programmed reduction (TPR) show that the catalytic activity is related to the dispersion of crystalline phases, Co3O4/CeO2 and Co3O4/CeO2–ZrO2 as well as to their reducibility. Particular attention was paid to the thermal stability of the Co3O4 phase in the temperature range of 750–800 °C, in both static (in a furnace) and dynamic conditions (continuous flow). The results indicate that the thermal stability of the phase Co3O4 heated up to 800 °C depends on the size of the cobalt oxide crystallites (fresh or aged samples) and on the oxygen content (excess λ = 8, stoichiometric λ = 1) in the reaction mixture. A stabilizing effect due to the presence of ceria or ceria–zirconia against Co3O4 decomposition into CoO was observed.

Moreover, the role of ceria and ceria–zirconia is to maintain a good combustion activity of the cobalt composite oxides by dispersing the active phase Co3O4 and by promoting the reduction at low temperature.  相似文献   


9.
Well‐defined multiarmed star random and block copolymers of ε‐caprolactone with l ‐lactide with controlled molecular weights, low polydispersities, and precise numbers of arms were synthesized by the ring‐opening polymerization of respective cyclic ester monomers. The polymers were characterized by 1H‐NMR and 13C‐NMR to determine their chemical composition, molecular structure, degree of randomness, and proof of block copolymer formation. Gel permeation chromatography was used to establish the degree of branching. Star‐branched random copolymers exhibited lower glass‐transition temperatures (Tg's) compared to a linear random copolymer. When the star random copolymers were melt‐blended with poly(l ‐lactic acid) (PLA), we observed that the elongation of the blend increased with the number of arms of the copolymer. Six‐armed block copolymers, which exhibited higher Tg's, caused the maximum improvement in elongation. In all cases, improvements in the elongation were achieved with no loss of stiffness in the PLA blends. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43267.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号