首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In order to clarify whether MgMoxOy catalysts with slight excess of molybdenum relative to the stoichiometric MgMoO4 compound showed increased activities for propene formation in the propane oxidative dehydrogenation, we investigated the catalytic properties of MoO3 supported on MgMoO4 and of MgMoxOy catalysts treated with acid or base. Supporting MoO3 on magnesium-rich MgMo0.99Oy catalysts which are poorly active, or treating them with acetic acid to remove excess magnesium, resulted in drastic activity increases. On the other hand, the ammonia treatment of molybdenum-rich MgMo1.05Oy catalysts which are highly active turned out to give a remarkable decrease in activity, because surface MoOx dissolved in ammonia water. A clear correlation was observed between the catalytic activities for propane oxidation and the dehydration of 2-propanol to propene over the supported catalyst and the treated catalysts. Since the bulk structures were unchanged by supporting or by the treatments, the existence of MoOx clusters formed on the surface of MgMoO4 are responsible for the activities in the oxidative dehydrogenation of propane. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
张娇  傅吉全 《工业催化》2012,20(11):34-38
以β分子筛为载体,通过浸渍法负载钼制备MoO3/β分子筛催化剂,对其进行XRD、FT-IR、BET和NH3-TPD物化性能表征,考察其对丙烷氧化脱氢制丙烯的催化性能。结果表明,样品具有活性组分MoO3存在,也有不同酸性能的活性位存在。负载量对催化剂的表面积和孔径有影响。单纯β分子筛载体有催化活性,不同钼负载量对催化性能有影响,负载钼质量分数为20%时,转化率达到极大值。  相似文献   

3.
以十六烷基三甲基溴化铵为表面活性剂,采用溶剂热法制备系列MoO_3/ZrO_2催化剂,采用H2-TPR、N_2吸附-脱附、X射线衍射等对其进行表征,并评价MoO_3/ZrO_2催化剂的丙烷氧化脱氢制丙烯催化性能。结果表明,MoO_3负载于ZrO_2载体上制备的催化剂催化活性增加,MoO_3负载质量分数为20%的MoO_3/ZrO_2催化剂,在反应温度为600℃时,丙烷转化率27.45%,丙烯选择性44.78%,丙稀收率12.29%。  相似文献   

4.
The structural and catalytic properties of MoO3 catalysts supported on ZrO2, Al2O3, TiO2 and SiO2 with Mo surface densities, ns, in the range of 0.5–18.5 Mo/nm2 were studied for the oxidative dehydrogenation (ODH) of ethane by in situ Raman spectroscopy and catalytic activity measurements at temperatures of 400–540 °C. The molecular structure of the dispersed surface species evolves from isolated monomolybdates (MoO4 and MoO5, depending on the support) at low loadings to associated MoOx units in polymolybdate chains at high loadings and ultimately to bulk crystalline phases for loadings exceeding the monolayer coverage of the supports used. The nature of the oxide support material and of the Mo–O–support bond has a significant influence on the catalytic behaviour of the molybdena catalysts with monolayer coverage. The dependence of reactivity on the support follows the order ZrO2 > Al2O3 > TiO2 > SiO2. The oxygen site involved in the anchoring Mo–O–support is of relevance for the catalytic activity.  相似文献   

5.
The interactions between Mo and V on alumina are studied for the oxidative dehydrogenation (ODH) of propane. Dispersed surface molybdena and vanadia species share alumina support but show no interaction below Mo + V monolayer coverage. Vanadia and molybdena species react on alumina into mixed Mo–V–(Al)–O above Mo + V monolayer coverage, which nature depends on environmental conditions. Molybdena sites may form Al2(MoO4)3 or Mo–V–O phases depending on loading and temperature. The Mo–V–O phases spread on the support as separate surface oxides at lower coverage, such trend appears promoted by ODH reaction conditions.  相似文献   

6.
In this work, the reactions of ethane and ethene in an oxidizing and non-oxidizing atmosphere over γ-alumina were investigated under temperature-programmed conditions, in an attempt to estimate the possible contribution and functionality of the support in the reaction pathway of ethane ODH over MoO3/Al2O3 catalysts. The results indicate that alumina contributes to the primary deep oxidation and dehydrogenation routes of ethane to COx and coke respectively, which proceed effectively over the acidic OH groups and the Al3+–O2− acidic centers. On the contrary, the formation of ethylene seems to be coupled to the presence of redox sites on the catalytic surface and requires the presence of the molybdena phase. Moreover, the redox sites of the MoOx species were found to unselectively activate the further overoxidation of the olefin to carbon oxides. Therefore, Al2O3 catalyzes the unselective primary oxidation of ethane to carbon oxides, whereas the molybdena phase is involved in the selective oxidative dehydrogenation (ODH) of ethane to ethene and the secondary overoxidation of ethene to COx.  相似文献   

7.
由丙烷直接催化脱氢制取丙烯已经成为增产丙烯的重要手段之一。以水热法制备Al_2O_3载体,采用等体积浸渍法制备不同PtSn负载量的PtSn/Al_2O_3催化剂。通过XRD、N2-吸附、拉曼光谱和H2-TPR等对其进行表征,并考察不同PtSn负载量对催化剂催化丙烷脱氢性能的影响。结果表明,在制备的催化剂中,Pt1.5Sn3/Al_2O_3具有最高的催化丙烷脱氢活性和稳定性,丙烷初始转化率高达55.6%,丙烯选择性98.1%。反应330 min后,丙烷转化率仅降约10%,选择性保持不变。  相似文献   

8.
Selective catalytic reduction (SCR) activity for NO conversion to N2 over γ-alumina, vanadia/alumina and molybdena/alumina catalysts has been investigated with methanol (MeOH) and dimethyl ether (DME) as reductants under lean conditions. Molybdena/alumina catalysts showed high efficiency for NO reduction with either reductant, especially at low temperature, which may involve surface formyl produced by oxidative dehydrogenation. Sulphated γ-alumina remains active for NO reduction with MeOH, while sulphated 5 wt.% MoO3/Al2O3 remains active with both MeOH and DME over a broad temperature range.  相似文献   

9.
Investigation of the mechanism of the selective reduction of NOx by propane over the individual samples of commercial catalysts NTK, STK, and Ni–Cr-oxide catalyst and over their binary mechanical mixtures has shown that the synergistic effect observed in the latter case is caused by the oxidative activation of propane on the STK and Ni–Cr-oxide surface which results in the formation of more effective reducing agents, propylene and hydrogen correspondingly. In the case of the Ni–Cr-oxide and NTK catalytic system, hydrogen forms over the former catalyst in propane oxidation, migrates through the gas phase to the latter catalyst, where NOx is activated with the formation of nitrate structures which interact with the said hydrogen giving the products of the overall reaction, N2 and H2O. When the pair of NTK and STK is concerned, the interaction of C3H8 and O2 over the latter catalyst gives stable products of partial propane oxidation and/or oxidative dehydrogenation which are transported due to interphase diffusion to NTK surface. The nature of observed synergistic enhancement of catalysis in the case of binary mixtures is proposed under the terms of “remote control” mechanism described in literature and can serve a useful purpose in the design of catalysts for this reaction.  相似文献   

10.
The photocatalytic properties of sulphated MoOx/γ-Al2O3 catalysts in cyclohexane oxidative dehydrogenation have been determined in a two-dimensional fluidized bed photoreactor and compared to those of sulphated MoOx/TiO2 catalysts. Photocatalytic tests on MoOx/γ-Al2O3 at 8 wt% MoO3 and various sulphate contents showed the selective (100%) formation of cyclohexene, without production of benzene, as instead found with MoOx/TiO2. These results show that the selectivity of photocatalytic cyclohexane oxydehydrogenation is dramatically influenced by the catalyst support.

Maximum cyclohexane conversion and cyclohexene yield of 11% were obtained for SO4 content of 2.6 wt% at 120 °C. Physico-chemical characterisation of catalysts indicates the presence of both octahedral polymolybdate and sulphate species on alumina surface, as previously found for titania. Increasing sulphate load, thermogravimetry evidenced the presence of up to three sulphate species at different thermal stability. The lower activity observed at high sulphate content is likely due to polymolybdate decoration by sulphates.  相似文献   


11.
The nanometer particles of two FexOy/TiO2’s with high photocatalytic activities were obtained through hydrothermal treatment and impregnation method. The XRD result did not show the peaks assigned to the Fe components (for example Fe2O3, Fe3O4, FeO3, and Fe metal) on the external surface of the anatase structure in the FexOy/TiO2 attained through hydrothermal treatment. This meant that Fe components were well incorporated into the TiO2 anatase structure. In addition, it exhibited uniform anatase structure with particle size of below 50 nm. The FeO3 component on the external surface of the TiO2 anatase structure was identified in the Fe-loaded TiO2 prepared through the impregnation method. In particular, the FT-IR spectroscopy revealed that the FexOy/TiO2 particle attained through hydrothermal treatment had higher hydrophilic property compared to the other catalysts. Together with the Fe component, they absorbed wavelength of above 370 nm. The band slightly shifted to the right without tail broadness, which was the UV absorption of Fe oxide in the FexOy/TiO2 particle attained through hydrothermal method. This meant that Fe components were well inserted into the framework of the TiO2 anatase structure. Despite the red shift in UV-Vis absorption, however, CHCl3 decomposition on the FexOy/TiO2 catalyst was not largely enhanced compared to pure TiO2.  相似文献   

12.
In the present work, with the aim of searching for new, highly effective catalysts for deep HDS, a series of NiMo catalysts with different MoO3 loadings (6–30 wt.%) was prepared using SBA-15 material covered with ZrO2-monolayer as a support. Prepared catalysts were characterized by N2 physisorption, small- and wide-angle XRD, UV–vis diffuse reflectance spectroscopy, temperature-programmed reduction, SEM-EDX and HRTEM, and their catalytic activity was evaluated in the 4,6-dimethyldibenzothiophene hydrodesulfurization (HDS). It was observed that ZrO2 incorporation on the SBA-15 surface improves the dispersion of the Ni-promoted oxidic and sulfided Mo species, which were found to be highly dispersed, up to 18 wt.% of MoO3 loading. Further increase in metal charge resulted in the formation of MoO3 crystalline phase and an increase in the stacking degree of the MoS2 particles. All NiMo catalysts supported on ZrO2-modified SBA-15 material showed high activity in HDS of 4,6-DMDBT. The best catalyst having 18 wt.% MoO3 and 4.5 wt.% NiO was almost twice more active than the reference NiMo/γ-Al2O3 catalyst. High activity of NiMo/Zr-SBA-15 catalysts and its evolution with metal loading was related to the morphological characteristics of the MoS2 active phase determined by HRTEM.  相似文献   

13.
The catalytic properties of transition metal oxides (Cr, Ce, and Co) supported on ZrO2 synthesized by various methods, as well as the effect of rhodium on the performance of the MxOy/ZrO2 oxide systems in NO reduction with hydrocarbons (methane, propane–butane mixture, and propene) were studied. Scanning electron microscopy, ammonia thermoprogrammed desorption (NH3-TPD), XPS, and IR spectroscopy were used to study the physicochemical indices of rhodium-promoted MxOy/ZrO2 oxide catalysts. The enhancement of the redox properties of the oxide catalysts upon the introduction of rhodium does not alter their bifunctional nature in SCR activity: these catalysts have both redox and strong acid Brønsted-sites.  相似文献   

14.
The effect of the nature and distribution of VOx species over amorphous and well-ordered (MCM-41) SiO2 as well as over γ-Al2O3 on their performance in the oxidative dehydrogenation of propane with O2 and N2O was studied using in situ UV–vis, ex situ XRD and H2-TPR analysis in combination with steady-state catalytic tests. As compared to the alumina support, differently structured SiO2 supports stabilise highly dispersed surface VOx species at higher vanadium loading. These species are more selective over the latter materials than over V/γ-Al2O3 catalysts. This finding was explained by the difference in acidic properties of silica- and alumina-based supports. C3H6 selectivity over V/γ-Al2O3 materials is improved by covering the support fully with well-dispersed VOx species. Additionally, C3H6 selectivity over all materials studied can be tuned by using an alternative oxidising agent (N2O). The improving effect of N2O on C3H6 selectivity is related to the lower ability of N2O for catalyst reoxidation resulting in an increase in the degree of catalyst reduction, i.e. spatial separation of active lattice oxygen in surface VOx species. Such separation favours selective oxidation over COx formation.  相似文献   

15.
Atomic layer epitaxy (ALE), a technique relying on saturating gas–solid reactions, was applied in the preparation of CrOx/Al2O3 catalysts using Cr(acac)3 vapor and air as source materials for CrOx. Vaporized Cr(acac)3 was reacted with preheated Al2O3, and the surface complex formed was treated with air to remove the ligand residues. The Cr loading increased from 1.3 to 12.5 wt.% as the number of saturating Cr(acac)3 and air reactions was increased from one to 10. CrOx/Al2O3 catalysts were also prepared from solution by incipient wetness impregnation (0.3–21 wt.%). XPS and UV–VIS measurements of the catalysts revealed the presence of both Cr6+ and Cr3+. Although the oxidation state distribution was similar, H2-temperature programmed reduction (TPR) and solubility measurements indicated that Cr6+ surface sites were in stronger interaction with Al2O3 and more uniformly distributed in the catalysts prepared by ALE than by impregnation. On the basis of the activity of the catalysts in the dehydrogenation of i-butane, we propose that the dehydrogenation reaction uses both reduced Cr6+, i.e. redox Cr3+, and exposed non-redox Cr3+ sites. Furthermore, the dehydrogenation reaction must be insensitive to the size of the CrOx ensembles since activities were similar for the catalysts prepared by ALE and impregnation. The decay of the dehydrogenation activity in successive prereduction–reaction–regeneration cycles was attributed to a decrease in the number of redox Cr3+ sites.  相似文献   

16.
The steady-and unsteady-state catalytic behaviour of Cu-MFI in the conversion of propane and NO in the presence of O2 is reported, showing how the chemisorption and transformation of reactants may influence the surface reactivity. Various effects were observed: (i) a change in the surface reactivity and kinetics in going from low to high concentrations of NO or propane, (ii) the transformation of NO to N2 and N2O promoted at low temperature (250°C) by oxygen in the absence of hydrocarbon, (iii) the influence of NO over the surface reactivity of the catalyst in the conversion of propane and (iv) the influence of surface precoverage with oxidized nitrogen oxides (NxOy) or carboxylate species on the catalyst transient reactivity in the reduction of NO to N2. In particular, Cu-MFI is initially more active when oxidized nitrogen oxides are present, suggesting that the active intermediate in the reduction of NO with propane is a complex formed by the reaction of nitrate with activated hydrocarbon. It is shown, however, that strongly bound oxidized nitrogen oxides may have also additional effects on the surface reactivity: (i) can promote the conversion of NO to N2 and N2O in transient conditions and (ii) can give a partial inhibition of the surface reactivity blocking copper ions due to their strong chemisorption. Furthermore, it is shown that NO reacts faster with oxygen than hydrocarbon forming NxOy species which are then the oxidizing agent for the hydrocarbon. It is thus suggested that the surface reactivity of Cu-MFI in the reduction of NO with propane/oxygen depends on the surface population of nitrogen oxide adspecies which influence not only the surface reactivity, but also the pathway of hydrocarbon oxidation.  相似文献   

17.
A series of CrOy (17.5 wt%)-CeO2 (X wt%)/γ-Al2O3 catalysts (X=0, 0.5, 2, 5, 8) with various Ce contents were prepared by a wetness impregnation method and were applied to the dehydrogenation of propane to propylene at 550℃ and 0.1 MPa. The prepared catalysts were characterized by BET, H2-TPR, O2-TPD, XPS, XRD, SEM-EDS and Raman spectroscopy. Among the prepared catalysts, the 17.5Cr-2Ce/Al catalyst with the largest amount of lattice oxygen exhibited the best catalytic performance for the dehydrogenation of propane to propylene with lattice oxygen. The decreased presence of oxygen defects and reducibility were the factors responsible for the improved dehydrogenation activity of the catalysts. The CeO2 layer could inhibit the evolution of lattice oxygen (O2-) to electrophilic oxygen species (O2-), and the oxygen defects on the catalyst surface were reduced. The inhibited lattice oxygen evolution prevented the deep oxidation of propane or propylene, the average COx selectivity decreased from 24.41% (17.5Cr/Al) to 5.71% (17.5Cr-2Ce/Al), and the average propylene selectivity increased from 60.15% (17.5Cr/Al) to 85.05% (17.5Cr-2Ce/Al).  相似文献   

18.
甲醇氧化制甲醛铁钼催化剂表面结构与活性   总被引:1,自引:0,他引:1       下载免费PDF全文
利用共沉淀法在不同搅拌速度下制备了相同Mo/Fe原子比的甲醇氧化制甲醛催化剂,采用SEM、XRD和拉曼光谱等对催化剂进行表征,在固定床微反上评价催化剂活性和选择性。结果表明,搅拌速度增大,催化剂比表面积增大,催化活性增强,甲醛收率由600 r·min-1时的73.8%增加到10000 r·min-1时的95.7%(280℃)。此外,催化剂由片状的MoO3和颗粒状的Fe2(MoO43两部分组成,游离的片状MoO3无明显催化活性,只有与Fe2(MoO43结合时才具有催化活性。  相似文献   

19.
One-step non-hydrolytic condensation reactions, starting from VO(OiPr)3 and NbCl5, have been used for the first time to prepare Nb-V oxide catalysts. Different materials containing the NbVO5 phase at different purity levels have been obtained, after thermal treatments, depending on the experimental conditions. The synthetic procedure has also been applied to prepare ternary Nb-V-Si oxide systems. From preliminary catalytic reaction studies it appears that the catalysts so prepared are promising with respect to their interesting performances in the oxidative dehydrogenation (ODH) of propane. It has also been found that -Sb2O4, physically blended with the Nb-V oxide materials, could act as an appropriate promoter to improve the catalytic performances of these systems.  相似文献   

20.
张永祥  王德龙  郭晓燕  邵怀启 《化工进展》2022,41(11):5879-5886
以模板法制备的Ti改性Al2O3为载体制备了CrO x /nTi-Al2O3催化剂,考察了Ti含量对催化剂的结构及其催化丙烷脱氢性能的影响。采用X射线衍射(XRD)、N2吸附-脱附、透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)、拉曼光谱、X射线光电子能谱(XPS)、氨气程序升温脱附(NH3-TPD)、吡啶红外吸附(Py-IR)等方法对催化剂的结构进行了表征。结果表明,CrO x /nTi-Al2O3催化剂具有均匀的泡沫状介孔结构并含有少量微孔,表面积在180~195m2/g;铬主要以Cr6+和Cr3+形式存在,其中Cr6+主要以单铬酸盐和双铬酸盐形式存在,Cr3+以α-Cr2O3晶体和高分散Cr2O3形式存在,Ti的加入降低了催化剂表面Cr6+含量,增加了孔道内高分散Cr3+含量;Ti的加入降低了弱酸的强度,生成了少量中强酸,并使催化剂中B酸和L酸中心数量明显减少。少量的Ti(0.5%~1.0%TiO2,质量分数)可明显提高丙烷转化率和丙烯收率,但过多的Ti(>2%TiO2)则明显降低丙烯选择性而使丙烯收率降低。CrO x /nTi-Al2O3催化剂表面Cr6+物种可催化丙烷氧化脱氢,本身还原成Cr3+后继续催化丙烷直接脱氢,孔道内部的高分散Cr3+可催化丙烷直接脱氢反应,二者结合使催化剂保持了较高的催化活性和较好的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号