首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Highly efficient conductors are strongly desired because they can lead to higher working performance and less energy consumption in their wide range applications. However, the improvements on the electrical conductivities of conventional conductors are limited, such as purification and growing single crystal of metals. Here, by embedding graphene in metals (Cu, Al, and Ag), the trade‐off between carrier mobility and carrier density is surmount in graphene, and realize high electron mobility and high electron density simultaneously through elaborate interface design and morphology control. As a result, a maximum electrical conductivity three orders of magnitude higher than the highest on record (more than 3,000 times higher than that of Cu) is obtained in such embedded graphene. As a result, using the graphene as reinforcement, an electrical conductivity as high as ≈117% of the International Annealed Copper Standard and significantly higher than that of Ag is achieved in bulk graphene/Cu composites with an extremely low graphene volume fraction of only 0.008%. The results are of significance when enhancing efficiency and saving energy in electrical and electronic applications of metals, and also of interest for fundamental researches on electron behaviors in graphene.  相似文献   

3.
Graphene-based materials represent a useful tool for the realization of novel neural interfaces. Several studies have demonstrated the biocompatibility of graphene-based supports, but the biological interactions between graphene and neurons still pose open questions. In this work, the influence of graphene films with different characteristics on the growth and maturation of primary cortical neurons is investigated. Graphene films are grown by chemical vapor deposition progressively lowering the temperature range from 1070 to 650 °C to change the lattice structure and corresponding electrical conductivity. Two graphene-based films with different electrical properties are selected and used as substrate for growing primary cortical neurons: i) highly crystalline and conductive (grown at 1070 °C) and ii) highly disordered and 140-times less conductive (grown at 790 °C). Electron and fluorescence microscopy imaging reveal an excellent neuronal viability and the development of a mature, structured, and excitable network onto both substrates, regardless of their microstructure and electrical conductivity. The results underline that high electrical conductivity by itself is not fundamental for graphene-based neuronal interfaces, while other physico–chemical characteristics, including the atomic structure, should be also considered in the design of functional, bio-friendly templates. This finding widens the spectrum of carbon-based materials suitable for neuroscience applications.  相似文献   

4.
The results of a study of film composites based on polyvinylidene fluoride with carbon nanotubes (CNTs) by dielectric relaxation spectroscopy are presented. For composite samples containing more than 0.5 wt % of nanotubes, nonlinear current–voltage characteristics are obtained. The concentration dependences of the electrical conductivity of the composites are examined and the percolation threshold for the samples under study is determined. It is shown that an insignificant increase in the electrical conductivity of the composites is observed even upon filling with 0.2 wt % of CNTs, whereas the electrical conductivity becomes three orders of magnitude higher upon the introduction of 1 wt% of CNTs and is seven orders of magnitude higher at more than 3 wt %, compared with the unfilled polymer. This confirms that CNTs are promising for the development of electrically conducting composites and film materials on the basis of polyvinylidene fluoride.  相似文献   

5.
In this paper, the behavior of the electrical conductivity of epoxy/silicon carbide (SiC) composites as a function of weight fraction and particle size of SiC at room temperature has been investigated. Composite samples were prepared by a mixture composed of the same amount of hardener and resin (5 mg) with different amounts (ranging from 5 mg to 7 mg) of silicon carbide powder with different grain sizes (400 and 800 grit). The conduction current was measured under different applied voltages from 1 to 10 kV (corresponding to applied electrical fields from 0.04 kV/mm to 0.4 kV/mm), and the composites microstructure was characterized by scanning electron microscopy. It was shown that the electrical conductivity of epoxy/SiC composites was found to increase when the weight fraction of SiC was increased and also to increase non-linearly as a function of the electrical field.  相似文献   

6.
Combining high-throughput experiments with machine learning accelerates materials and process optimization toward user-specified target properties. In this study, a rapid machine learning-driven automated flow mixing setup with a high-throughput drop-casting system is introduced for thin film preparation, followed by fast characterization of proxy optical and target electrical properties that completes one cycle of learning with 160 unique samples in a single day, a > 10 ×  improvement relative to quantified, manual-controlled baseline. Regio-regular poly-3-hexylthiophene is combined with various types of carbon nanotubes, to identify the optimum composition and synthesis conditions to realize electrical conductivities as high as state-of-the-art 1000 S cm−1. The results are subsequently verified and explained using offline high-fidelity experiments. Graph-based model selection strategies with classical regression that optimize among multi-fidelity noisy input-output measurements are introduced. These strategies present a robust machine-learning driven high-throughput experimental scheme that can be effectively applied to understand, optimize, and design new materials and composites.  相似文献   

7.
Coordination complexes are widely used to tune the mechanical behaviors of polymer materials, including tensile strength, stretchability, self-healing, and toughness. However, integrating multivalent functions into one material system via solely coordination complexes is challenging, even using combinations of metal ions and polymer ligands. Herein, a single-step process is described using silver-based coordination complexes as cross-linkers to enable high compressibility (>85%). The resultant organogel displays a high compressive strength (>1 MPa) with a low energy loss coefficient (<0.1 at 50% strain). Remarkably, it demonstrates an instant self-recovery at room temperature with a speed >1200 mm s−1, potentially being utilized for designing high-frequency-responsive soft materials (>100 Hz). Importantly, in situ silver nanoparticles are formed, effectively endowing the organogel with high conductivity (550 S cm−1). Given the synthetic simplification to achieve multi-valued properties in a single material system using metal-based coordination complexes, such organogels hold significant potential for wearable electronics, tissue-device interfaces, and soft robot applications.  相似文献   

8.
Elastomeric polymers can be filled with metallic micro- or nanoparticles to obtain electrical conductivity, in which the conductivity is largely determined by the intrinsic conductivity of and contact resistance between the particles. Electrons will flow through the material effectively when the percolation threshold for near-neighbor contacts is exceeded and sufficiently close contacts between the filler particles are realized for electron tunneling to occur. Silver-coated glass microparticles of two types (fibers and spheres) were used as fillers in a thermoplastic elastomer composite based on styrene–ethylene–butylene–styrene copolymer, and the direct-current (DC) resistance and radiofrequency impedance were significantly reduced by coating the filler particles with octadecylmercaptan. Not only was the resistance reduced but also the atypical positive piezoresistivity effect observed in these elastomers was strongly reduced, such that resistivity values below 0.01 Ω cm were obtained for compression ratios up to 20%. In the DC measurements, an additional decrease of resistivity was obtained by inclusion of π-extended aromatic compounds, such as diphenylhexatriene. Some qualitative theories are presented to illuminate the possible mechanisms of action of these surface coatings on the piezoresistivity.  相似文献   

9.
Microorganism metabolic activity can facilitate the formation of cellular material systems that have unusual mechanical and physical properties. In the living world microorganisms are commonly used for preparing porous food by fermentation; here carbon nanotubes, graphene nanoplatelets, and a mix of them are dispersed in liquid silicone rubber with single‐cell fungi of commercial beer yeast. The fermentation of such microorganisms during the gelling of the silicone matrix results in bionic composites with buckled/collapsed cells that infer, as rationalized with an analytical model and excluded in a abiotic experimental comparison, auxetic properties. During stretching it is found that the Poisson's ratio of such composites changes sign, from negative to positive, and the variation of the electrical resistance is negative. In addition to the conductivity increment, a general increment of the stretchability and damage resistance with respect to the composites prepared by abiotic process is observed. Bionic composites, even if in their infancy, can thus be multifunctional and superior to their traditional/abiotic counterparts.  相似文献   

10.
The sp2‐hybridized nanocarbon (e.g., carbon nanotubes (CNTs) and graphene) exhibits extraordinary mechanical strength and electrical conductivity but limited external accessible surface area and a small amount of pores, while nanostructured porous carbon affords a huge surface area and abundant pore structures but very poor electrical conductance. Herein the rational hybridization of the sp2 nanocarbon and nanostructured porous carbon into hierarchical all‐carbon nanoarchitectures is demonstrated, with full inherited advantages of the component materials. The sp2 graphene/CNT interlinked networks give the composites good electrical conductivity and a robust framework, while the meso‐/microporous carbon and the interlamellar compartment between the opposite graphene accommodate sulfur and polysulfides. The strong confinement induced by micro‐/mesopores of all‐carbon nanoarchitectures renders the transformation of S8 crystal into amorphous cyclo‐S8 molecular clusters, restraining the shuttle phenomenon for high capacity retention of a lithium‐sulfur cell. Therefore, the composite cathode with an ultrahigh specific capacity of 1121 mAh g?1 at 0.5 C, a favorable high‐rate capability of 809 mAh g?1 at 10 C, a very low capacity decay of 0.12% per cycle, and an impressive cycling stability of 877 mAh g?1 after 150 cycles at 1 C. As sulfur loading increases from 50 wt% to 77 wt%, high capacities of 970, 914, and 613 mAh g?1 are still available at current densities of 0.5, 1, and 5 C, respectively. Based on the total mass of packaged devices, gravimetric energy density of GSH@APC‐S//Li cell is expected to be 400 Wh kg?1 at a power density of 10 000 W kg?1, matching the level of engine driven systems.  相似文献   

11.
The local electrical properties of a conductive graphene/polystyrene (PS) composite sample are studied by scanning probe microscopy (SPM) applying various methods for electrical properties investigation. We show that the conductive graphene network can be separated from electrically isolated graphene sheets (GS) by analyzing the same area with electrostatic force microscopy (EFM) and conductive atomic force microscopy (C‐AFM). EFM is able to detect the graphene sheets below the sample surface with the maximal depth of graphene detection up to ≈100 nm for a tip‐sample potential difference of 3 V. To evaluate depth sensing capability of EFM, the novel technique based on a combination of SPM and microtomy is utilized. Such a technique provides 3D data of the GS distribution in the polymer matrix with z‐resolution on the order of ≈10 nm. Finally, we introduce a new method for data correction for more precise 3D reconstruction, which takes into account the height variations.  相似文献   

12.
Stretchable conductive hydrogels with simultaneous high mechanical strength/modulus, and ultrahigh, stable electrical conductivity are ideal for applications in soft robots, artificial skin, and bioelectronics, but to date, they are still very challenging to fabricate. Herein, sandwich-structured hybrid hydrogels based on layers of aramid nanofibers (ANFs) reinforced polyvinyl alcohol (PVA) hydrogels and a layer of silver nanowires (AgNWs)/PVA are fabricated by electrospinning combined with vacuum-assisted filtration. The hybrid ANF-PVA hydrogels exhibit excellent mechanical properties with the tensile modulus of 10.7–15.4 MPa, tensile strength of 3.3–5.5 MPa, and fracture energy up to 5.7 kJ m−2, primarily attributed to the strong hydrogen bonding interactions between PVA and ANFs and in-plane alignment of the fibrous structure. Rational design of heterogeneous structure endows the hydrogels with ultrahigh apparent electrical conductivity of 1.66 × 104 S m−1, among the highest electrical conductivities ever reported so far for conductive hydrogels. More importantly, this ultrahigh conductivity remains constant upon a broad range of applied strains from 0–90% and over 500 stretching cycles. Furthermore, the hydrogels exhibit excellent Joule heating and electromagnetic interference shielding performances due to the ultrahigh electrical conductivity. These mechanically strong, hybrid hydrogels with ultrahigh and strain-invariant electrical conductivity represent great promises for many important applications such as flexible electronics.  相似文献   

13.
Niftiyev  N. N.  Mammadov  F. M.  Muradov  M. B. 《Semiconductors》2020,54(6):627-629
Semiconductors - The results of studying the frequency and temperature dependences of the ac electrical conductivity of FeGaInSe4 crystals are presented. It is found that the systematic feature...  相似文献   

14.
We propose an explanation for the high electrical conductivity of the ferroelectric strontium-barium niobate. As the temperature T approaches the ferroelectric transition T c, the static dielectric constant $\varepsilon(0)$ diverges when a soft mode occurs. This divergence of $\varepsilon(0)$ reduces the donor binding energy, and increases the effective Bohr radius of the donor. The electrons bound to the donors become unbound, and the material becomes conductive.  相似文献   

15.
研究了不同含氮量的类金刚石薄膜(DLC:N)的导电性能,发现随着氮含量的增加,薄膜的电导率增加较缓,当氮含量达到一定值(12.8at%)后,薄膜电导率反而随氮含量的继续增加而下降。将薄膜在300℃下退火30min,结果表明低参氮的薄膜退火后导电性能有了较大的提高,而高掺氮的薄膜退火后电导率有所下降。Raman和XPS光谱研究表明,当薄膜中的氮含量达到一定值后,在薄膜中会出现非导电(a-CNx)的成分,因此高掺杂的类金刚石薄膜的电导率下降。FTIR光谱表明,充当施主杂质中心的氮原子在薄膜退火过程中存在被“激活”的现象,从而提高了电导率。因此氮对高掺杂和低掺杂薄膜导电性能的影响是不同的。  相似文献   

16.
Based on terahertz time-domain spectroscopy system and two-dimensional scanning control system, terahertz transmission and reflection intensity mapping images on a graphene film are obtained, respectively. Then, graphene conductivity mapping images in the frequency range 0.5 to 2.5 THz are acquired according to the calculation formula. The conductivity of graphene at some typical regions is fitted by Drude-Smith formula to quantitatively compare the transmission and reflection measurements. The results show that terahertz reflection spectroscopy has a higher signal-to-noise ratio with less interference of impurities on the back of substrates. The effect of a red laser excitation on the graphene conductivity by terahertz time-domain transmission spectroscopy is also studied. The results show that the graphene conductivity in the excitation region is enhanced while that in the adjacent area is weakened which indicates carriers transport in graphene under laser excitation. This paper can make great contribution to the study on graphene electrical and optical properties in the terahertz regime and help design graphene terahertz devices.  相似文献   

17.
We have developed a system for simultaneous measurement of the electrical conductivity and Seebeck coefficient for thermoelectric samples in the temperature region of 300 K to 1000 K. The system features flexibility in sample dimensions and easy sample exchange. To verify the accuracy of the setup we have referenced our system against the NIST standard reference material 3451 and other setups and can show good agreement. The developed system has been used in the search for a possible high-temperature Seebeck standard material. FeSi2 emerges as a possible candidate, as this material combines properties typical of thermoelectric materials with large-scale fabrication, good spatial homogeneity, and thermal stability up to 1000 K.  相似文献   

18.
The authors have developed a PSpice model of the electrical behavior of DNA molecules for use in nanoelectronic circuit design. To describe the relationship between the current through DNA and the applied voltage we used published results of the direct measurements of electrical conduction through DNA molecules. The experimental dc current-voltage (-) curves show a nonlinear conduction mechanism as well as the existence of a temperature dependent semiconductive voltage gap. A weighted least-squares polynomial fit to the experimental data at one temperature, with fitted temperature dependent polynomial coefficient of the linear term, was used as a mathematical model of electrical behavior of DNA. An equivalent electrical circuit was created in PSpice in which DNA was modeled as a voltage-controlled current source described by the mathematical model that includes temperature dependence . PSpice simulations with this model generated - curves at other temperatures that were in excellent agreement with the corresponding experimental data (average deviation 5%). This is important because having models of DNA molecules in the form of equivalent electronic circuits would be useful in the design of nanoelectronic circuits and devices.  相似文献   

19.
With developments in technology, tremendous effort has been devoted to produce flexible, scalable, and high‐performance supercapacitor electrode materials. This report presents a novel fabrication method of highly flexible and scalable electrode material for high‐performance supercapacitors using solution‐processed polyaniline (PANI)/reduced graphene oxide (RGO) hybrid film. SEM, TEM, Raman, and XPS analyses show that the PANI/RGO film is successfully synthesized. The percentages of the PANI component in the film are controlled (88, 76, and 60%), and the maximum electrical conductivity (906 S cm?1) is observed at the PANI percentage of 76%. Notably, electrical conductivity of the PANI/RGO film (906 S cm?1) is larger than both PANI (580 S cm?1) and RGO (46.5 S cm?1) components. XRD analysis demonstrates that the strong π–π interaction between the RGO and the PANI cause more compact packing of the PANI chains by inducing more fully expanded conformation of the PANI chains in the solution, leading to increase in the electrical conductivity and crystallinity of the film. The PANI/RGO film also displays diverse advantages as a scalable and flexible electrode material (e.g., controllable size and great flexibility). During the electrochemical tests, the film exhibits high capacitance of 431 F g?1 with enhanced cycling stability.  相似文献   

20.
提出了一种基于ARM处理器的电导率测量系统的设计方案,ARM处理器S3C2410对采集的电流信号和温度信号进行处理,经温度补偿后得到固定温度下的电导率后送入液晶显示,给出了系统测量的修正办法.测试结果表明:该系统功耗低、性能稳定、扩展性强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号