首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a preparatory step toward establishing reliable numerical design tools for ZnO-based optoelectronic devices, we have reassessed the available information on material parameters relevant for the simulation of light-emitting diodes (LEDs) with active regions including ZnO, MgZnO, and BeZnO layers. The impact of different approximations for the electronic structure and the interface polarization charge on the optical properties of bulk ZnO and ZnO/MgZnO quantum wells has been evaluated, and a consistent set of parameters has been used not only for systematic comparison of ZnO/MgZnO and ZnO/BeZnO single quantum well structures but also for the first simulation of a realistic ZnO/BeZnO multiple quantum well LED.  相似文献   

2.
A method for calculating the probability of intersubband electron-electron scattering in quantum wells of complex shape is suggested. Numerical data for stepped InGaAs/AlGaAs quantum wells are obtained. The principal mechanisms of electron-electron scattering that exert the strongest effect on the intersubband inversion of population in laser structures are determined.  相似文献   

3.
Two mechanisms for achieving lower terahertz-range frequencies in quantum-cascade structures with two quantum wells based on GaAs/AlGaAs compounds are proposed. The first mechanism is based on the introduction of composite quantum wells consisting of a narrow (??2 nm) quantum well with a low potential barrier, being within the main wide quantum well. The second mechanism is based on barriers with unequal heights, arranged in front of and behind the composite quantum well. Optimized quantum-cascade laser structures emitting in the regions of ??2.15 and ??1.35 THz are calculated.  相似文献   

4.
The generation of coherent terahertz radiation upon the band-to-band femtosecond laser photoexcitation of GaAs/AlGaAs multiple-quantum-well structures in a transverse electric field at room temperature is investigated. The properties of the observed terahertz radiation suggest that it is generated on account of the excitation of a time-dependent dipole moment as a result of the polarization of nonequilibrium electron-hole pairs in quantum wells by the electric field. The proposed theoretical model taking into account the dynamic screening of the electric field in the quantum wells by nonequilibrium charge carriers describes the properties of the observed terahertz signal.  相似文献   

5.
AlInGaAs/AlGaAs应变量子阱增益特性研究   总被引:2,自引:0,他引:2  
采用Shu Lien Chuang方法计算了AlInGaAs/AlGaAs应变引起价带中重、轻空穴能量变化曲线,在Harrison模型的基础上详细地计算了AlInGaAs/AlGaAs和GaAs/AlGaAs量子阱电子、空穴子能级分布并且进一步研究了这两种材料在不同注入条件下的线性光增益.进一步计算比较可以得出AlInGaAs/AlGaAs应变量子阱光增益特性要优于GaAs/AlGaAs非应变量子阱增益特性,因此AlInGaAs/AlGaAs应变量子阱半导体材料应用于半导体激光器比传统GaAs/AlGaAs材料更具优势.  相似文献   

6.
An optimised design for optoelectronic devices which depends on the interaction between an electromagnetic standing wave and the carrier population is described. The structure consists of quantum well layers spaced at one-half the wavelength of a selected optical transition in quantum wells. This spatial periodicity allows the amplifying or absorbing medium (quantum wells) to coincide with the peaks of the standing wave optical field in the Fabry-Perot cavity. In such a periodic medium, the gain or absorption for the selected wavelength is enhanced by a factor of two compared to a uniform medium. This concept was applied to fabricate a surface-emitting semiconductor laser in the GaAs/AlGaAs system. Lasing was achieved with the shortest gain medium length (320 nm) ever reported  相似文献   

7.
The transformation of photoluminescence spectra associated with A+ centers in GaAs/AlGaAs quantum wells due to changes in the pumping level and temperature is analyzed. It is shown that an important part in the formation of the energy structure of the system of GaAs/AlGaAs quantum wells is played by electrostatic potential fluctuations responsible for the spatial redistribution of charge and the appearance of free holes.  相似文献   

8.
A technique is developed for the photoluminescence-spectroscopy characterization of resonant-tunneling structures based on a long-period GaAs/AlGaAs superlattice that can be used for quality evaluation at all the stages of fabrication, including molecular-beam epitaxy, photolithography, and annealing. Factors such as the small energy difference between the quantum confined states in wide quantum wells, which make the photoluminescence characterization of such structures more difficult are taken into account. The long-period multiquantum-well structures are promising for the development of a new kind of solid-state intersub-band-transition devices emitting the narrow band radiation in far infrared. Their potential is essentially based on the fact that the scattering and the decay of carriers in the lower quantum-confined states may or may not involve optical phonons. The technique works at both liquid-helium and room temperature. It helps one optimize the process conditions to fabricate high-quality wide-quantum-well structures with excellent uniformity and desired parameters.  相似文献   

9.
G. J. Rees   《Microelectronics Journal》1997,28(8-10):957-967
III–V semiconductors are piezoelectric. Quantum wells grown pseudomorphically strained on the (111) face are axially polarized and include strong, built-in do electric fields. The associated loss of inversion symmetry in the wells has important consequences for the electrooptic properties of these structures. They can be exploited to improve the performance of a number of existing optoelectronic devices and also to generate new ones. In this paper we review some of these properties and discuss the work at Sheffield investigating the prospects for improved performance and novel. devices in the strained InGaAs/AlGaAs/GaAs and InGaAs/InAlAs/InP systems.  相似文献   

10.
《Microelectronics Journal》1999,30(4-5):379-385
Extremely flat interfaces, i.e. effectively atomically flat interfaces over a wafer-size area were realized in GaAs/AlGaAs quantum wells (QWs) grown on (411)A GaAs substrates by molecular beam epitaxy (MBE). These flat interfaces are called as “(411)A super-flat interfaces”. Besides in GaAs/AlGaAs QWs, the (411)A super-flat interfaces were formed in pseudomorphic InGaAs/AlGaAs QWs on GaAs substrates and in pseudomorphic and lattice-matched InGaAs/InAlAs QWs on InP substrates. GaAs/AlGaAs resonant tunneling diodes and InGaAs/InAlAs HEMT structures with the (411)A super-flat interfaces were confirmed to exhibit improved characteristics, indicating high potential of applications of the (411)A super-flat interfaces. High density, high uniformity and good optical quality were achieved in (775)B GaAs/(GaAs)m(AlAs)n quantum wires (QWRs) self-organized in a GaAs/(GaAs)m(AlAs)n QW grown on (775)B GaAs substrates by MBE. The QWRs were successfully applied to QWR lasers, which oscillated at room temperature for the first time as QWR lasers with a self-organized QWR structure in its active region. These results suggest that MBE growth on high index crystal plane such as (411)A or (775)B is very promising for developing novel semiconductor materials for future electron devices.  相似文献   

11.
InGaAs/GaAs/AlGaAs laser diodes with quantum wells are grown by the metal-organic chemical vapor deposition (MOCVD) method on an exact Si (001) substrate with a Ge buffer layer. The diodes generate stimulated emission in the pulsed mode at room temperature in the spectral range from 1.09 to 1.11 μm.  相似文献   

12.
We have performed nitrogen atomic-layer doping into GaAs, AlGaAs, and AlGaAs/GaAs single quantum wells using atomic nitrogen cracked by a hot tungsten filament. While the atomic-layer-doped GaAs layers show a series of sharp and strong photoluminescence lines relating to excitons bound to nitrogen atoms at 8K, atomic-layer-doped AlGaAs layers show several broad nitrogen-related lines. For the atomic-layer-doped single quantum well at the center of the GaAs layer, the quantum well luminescence itself disappears and a dominant and sharp luminescence is observed at a longer wavelength. It is found that the As pressure during the atomic-layer doping greatly affects the luminescence characteristics.  相似文献   

13.
采用n型掺杂的AlGaAs/GaAs和AlGaAs/InGaA多量子阱材料,基于MOCVD外延生长技术,利用成熟的GaAs集成电路加工工艺,设计并制作了不同结构的中波-长波双色量子阱红外探测器(QWIP)器件,器件采用正面入射二维光栅耦合,光栅周期设计为4μm,宽度2μm;对制作的500μm×500μm大面积双色QWIP单元器件暗电流、响应光谱、探测率进行了测试和分析。在-3V偏压、77K温度和300K背景温度下长波(LWIR)和中波(MWIR)QWIP的暗电流密度分别为0.6、0.02mA/cm2;-3V偏压、80K温度下MWIR和LWIR QWIP的响应光谱峰值波长分别为5.2、7.8μm;在2V偏压、65K温度下,LWIR和MWIR QWIP的峰值探测率分别为1.4×1011、6×1010cm.Hz1/2/W。  相似文献   

14.
The development of GaAs-based quantum cascade lasers incorporating indirect bandgap AlAs barriers in conjunction with ultrathin InAs layers in the active regions of the device is reported. The InAs layers produce a downshift of the energies of the lower lasing states, allowing laser emission to be observed at λ=8.34 μm. The GaAs/InAs/AlAs devices operate in pulsed mode up to a maximum temperature of 250 K, with a characteristic temperature of around 200 K for T>100 K  相似文献   

15.
A far infrared (FIR) laser based on intersubband transitions in quantum wells is proposed where a pumping laser is used to create population inversion in the structure. The goal is to develop a structure which operates essentially as a 4-level laser, to minimize bottlenecking of the lower laser state. Multiple quantum wells can be used in the active laser of these structures to enhance the laser gain and the minimum required reflectivity in the cavity structure. The possibility of using both conduction and valence band quantum-well structures are investigated. Our study shows that, due to high intersubband scattering rates in the valence band structure, the creation of population inversion is more difficult and requires a high pumping power density while in the conduction band structure, population inversion can be achieved by a moderate pumping power density. The maximum population inversion in the conduction band structure is estimated to be 2.1×1011 cm2, which requires a pumping power density 2 kW cm-2 for a single quantum well. The threshold power as well as the minimum required reflectivity of the cavity structure for the conduction band scheme are estimated for different well numbers  相似文献   

16.
In this study, we describe the correlations between the photoluminescence (PL) spectra and electrical properties of pseudomorphic modulation-doped AlGaAs/InGaAs/GaAs quantum wells (MDQWs) grown by molecular beam epitaxy. In MDQWs, the presence of a large sheet carrier density contributes significantly to the PL linewidth. At low temperatures (4.2 K), free carrier induced broadening of the PL linewidth is influenced by the material quality of the structure. At higher temperatures (77 K), differences in the material quality do not affect the linewidth significantly, and under these conditions the PL linewidth is a good measure of the sheet carrier density. The ratio of the 77 K to 4.2 K PL linewidths provides useful information about the crystalline quality of the MDQW structures as illustrated by the correlation with 77 K Hall mobility data and a simple model. We present results of Electron Beam Electroreflectance (EBER) to characterize MDQWs and undoped quantum wells in the AlGaAs/InGaAs/GaAs material system. Several transitions have been observed and fitted to excitonic Lorentzian lineshapes, providing accurate estimates of transition energy and broadening parameter at temperatures of 96 K and 300 K.  相似文献   

17.
Shallow and deep centers in ZnO(P)/MgZnO/ZnO/MgZnO/ZnO(Ga) structures grown by pulsed laser deposition on sapphire were studied before and after annealing in oxygen atmosphere at high temperatures of 850°C to 950°C. In both as-grown and annealed structures, microcathodoluminescence spectra in the near-bandgap region demonstrate a blue-shift by 0.13 eV compared with bulk ZnO films, indicating carrier confinement in the MgZnO/ZnO/MgZnO quantum well (QW). Annealing strongly decreases the concentration of shallow uncompensated donors from ~1017 cm−3 to ~1016 cm−3 and makes it possible to probe the region of the QW by capacitance–voltage (CV) profiling. This profiling confirms charge accumulation in the QW. The dominant electron traps in the as-grown films are the well-known traps with activation energies of 0.3 eV and 0.8 eV. After annealing, the electron traps observed in the structure have activation energies of 0.14 eV, 0.33 eV, and 0.57 eV, with the Fermi level in the n-ZnO(P) pinned by the 0.14-eV traps. The annealing also introduces deep compensating defects that decrease the intensity of band-edge luminescence and produce a deep luminescence defect band at 2.2 eV. In addition, a defect vibrational band becomes visible in Raman spectra near 650 cm−1. No conversion to p-type conductivity was detected. The results are compared with the data for the structures successfully converted to p-type, and possible reasons for the observed differences are discussed.  相似文献   

18.
Abrupt changes in the capacitance between the p and n regions were observed in a planar p-i-n GaAs/AlGaAs heterostructure with two tunneling-coupled quantum wells exposed to laser irradiation (λ=633 nm). These changes can be caused by variations in both temperature (in the vicinity of T~2 K) and the dc voltage applied to the structure. A memory effect was detected; this effect manifested itself in the long lifetime of anomalies observed after the illumination had been turned off. Self-consistent calculations of distributions of charge and electric field were performed for the structures that contained a donor impurity in AlGaAs layers; this impurity is responsible for origination of DX centers that give rise to persistent photoconductivity. It is demonstrated that abrupt changes in capacitance can occur in such a structure, and the values of the parameters required for origination of these jumps are determined.  相似文献   

19.
The scheme of a laser which can operate in the far-infrared range (λ ∼ 150 μm) is suggested. In order to attain the inversion of the subband population it was suggested that electron transport in three tunnel-coupled quantum wells in a strong electric field, which lies in the plane of quantum wells, be used. An important specific feature of the structure suggested is the presence of a single rough heterointerface. The electron trans-port was simulated by the Monte Carlo method for the AlxGa1−x As/GaAs (x=0.2–0.3) heterostructure. The simulation demonstrated that the population inversion in the first and second subbands of dimensional quantization is realized in the field above 1.2 kV/cm at T=4.2 and 77 K. __________ Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 36, No. 6, 2002, pp. 724–729. Original Russian Text Copyright ? 2002 by Aleshkin, Dubinov.  相似文献   

20.
Semiconductors - The design of a terahertz (THz) quantum cascade laser (QCL) with an active module based on three GaAs/Al0.18Ga0.82As quantum wells for high-temperature generation at a frequency of...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号