首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于神经网络的短期电价预测   总被引:5,自引:0,他引:5  
利用系统旋转备用、历史负荷和清算电价对未来时段电价的影响来进行电价预测。以澳大利亚昆士兰州电力市场为背景,采用神经网络的方法,建立了提前1天电力市场清算电价短期预测模型。模型为3层BP神经网络结构,并采用昆士兰州电力市场1998年的电价数据进行了训练和预测分析,结果表明该模型具有良好的预测效果。  相似文献   

2.
基于自组织映射神经网络的市场清算电价预测   总被引:5,自引:1,他引:5       下载免费PDF全文
市场清算电价预测是电力市场中交易决策的基础。人工神经网络是电价预测较为理想的方法,但依然存在一些问题,如样本训练有时需要很长时间,存在收敛问题,特别是当样本特征量不明显的时候,这种现象更为突出。针对这一问题,利用自组织映射的聚类特性将历史数据进行特征分类和筛选处理,处理后形成的新数据用于训练三层BP神经网络,仿真结果表明,经过这种数据处理后,网络的收敛速度得到了显著提高,且预测效果良好。  相似文献   

3.
市场清算电价预测是电力市场中交易决策的基础.人工神经网络是电价预测较为理想的方法,但依然存在一些问题,如样本训练有时需要很长时间,存在收敛问题,特别是当样本特征量不明显的时候,这种现象更为突出.针对这一问题,利用自组织映射的聚类特性将历史数据进行特征分类和筛选处理,处理后形成的新数据用于训练三层BP神经网络,仿真结果表明,经过这种数据处理后,网络的收敛速度得到了显著提高,且预测效果良好.  相似文献   

4.
耿新民 《华东电力》2006,34(6):13-15
介绍了发电厂竞价上网辅助决策系统的构成,认为其中最主要的2个模块为成本分析和市场预测,并在出清电价预测方面提出了一种基于神经网络的电价预测方法.  相似文献   

5.
基于遗传算法优化BP网络的提前一天市场清算电价预测   总被引:8,自引:0,他引:8  
针对电力市场提前一天市场清算电价预测,考虑历史负荷和历史清算电价对未来时段电价的影响,分别采用BP神经网络和遗传算法优化BP网络的方法,建立了提前一天电力市场清算电价预测模型。并采用澳大利亚昆士兰州电力市场1998年的电价数据分别进行了训练和预测,对结果进行了比较分析。结果表明遗传算法优化BP网络模型具有良好的预测效果。  相似文献   

6.
基于多因素小波分析的神经网络短期现货电价预测方法   总被引:2,自引:0,他引:2  
一般采用小波分解的电价预测方法是将历史电价分解后分别预测,预测过程中没有引入其他电价影响因素,或者是直接引入未经小波分解的影响因素。提出一种小波分析与神经网络相结合的预测方法,将历史电价和历史负荷都进行小波多分辨率单尺度分解,分解成概貌电价、细节电价和概貌负荷、细节负荷。在此基础上,用历史概貌电价和概貌负荷序列训练BP神经网络,预测出未来的概貌电价;用历史细节电价和细节负荷序列训练BP神经网络,预测出未来的细节电价。将概貌电价和细节电价进行重构,得到最终的预测电价。对美国PJM电力市场的实际电价(LMP)进行预测,验证了该方法的有效性和可行性。  相似文献   

7.
基于人工神经网络的短期系统边际电价预测   总被引:4,自引:0,他引:4  
在对系统边际电价(SMP)的影响因素进行定性分析基础之上,采用了人工神经网络理论进行边际电价预测。在ANN模型中引入了平滑因子和遗忘因子,从而加快收敛速度并解决了ANN的遗忘问题。通过对某网局发电市场真实数据的仿真结果表明,该模型有预测精度高、速度快的优点。  相似文献   

8.
基于BP神经网络的短期市场出清电价预测   总被引:2,自引:0,他引:2  
在电力市场中,短期市场电价预测的准确与否,对发电厂的竞价决策具有关键性的影响。文章提出应用神经网络算法来模拟预测日前市场出清电价,以获取精确的预测结果,该方法可适用于原始数据有限的情况。利用电力系统历史负荷、历史清算电价、系统的旋转备用等影响因素作为分析因子,分析其对未来时段电力市场价格的影响,并对下一交易时段电价进行预测。以美国加利福尼亚州电力市场为背景,采用BP神经网络算法,应用MATLAB软件编程,建立电力市场清算电价短期预测模型。该模型结构为三层神经网络,通过网络的反向传播过程不断修正模型中的神经元连接权值和阈值,充分发挥BP网络局部搜索能力强的优点,实现对未来24小时市场出清电价的有效预测,并针对美国加州实际电力市场价格数据进行训练和预测分析,结果表明该模型具有良好的预测效果。  相似文献   

9.
杨婵  舒崇军 《电气开关》2010,48(6):35-40
以美国加州电力市场为背景,在分析了市场清算电价(MCP)的影响因素的基础上,采用了一种基于反向传播(BP)网络预测下一日市场清算电价的方法。该方法考虑了系统供求关系、历史负荷、历史电价等对未来时段电价的影响,建立了一个单隐层的神经网络结构。预测模型融合了模糊理论,利用隶属函数对温度(最高温度、平均温度、最低温度)进行了模糊处理,将这些因素作为神经网络的输入量。在负荷高峰时段,往往存在市场外机组的调度和参与者的策略性投标等问题,这些因素共同作用容易造成电价尖峰。建立一个节假日模型来预测节假日的电价。采用美国加州电力市场的历史数据进行了训练和预测分析,结果表明该模型具有良好的预测效果。  相似文献   

10.
电价是反映电力市场运营状况,评价市场竞争效率的核心指标,是电力市场决策的基础.阐述了电力市场电价预测问题的特点、内容和方法,分析和比较了短期预测和中长期预测的各种方法,指出了各种方法的优缺点,提出了一些提高预测精度的改进措施,并对电价预测中的一些关键问题进行了分析探讨.  相似文献   

11.
基于小波分解的改进神经网络MCP预测方法及应用   总被引:13,自引:4,他引:13  
电力工业的市场化改革突出了市场清算价格(MCP)预测的重要性。文中以浙江电力市场为背景,提出了一种基于小波分解和神经网络的MCP预测方法。该方法对原电价数据进行了预处理,将经小波分解去除细节后的重构电价序列作为输入参数,并且依据“重近轻远”的原则及考虑到电价具有星期的周期性的特点,重新设计了神经网络拟合误差的代价函数。对浙江电力市场下一交易日的MCP进行了预测,预测精度达到90%左右。  相似文献   

12.
市场电价的实证分析及预测建模   总被引:6,自引:2,他引:6  
电力作为一种特殊的商品,具有很低的用电需求弹性,难以大量存储,易受到发电容量、输电阻塞等系统特有约束的影响,尤其是在电力市场环境下还要受到发电公司报价策略的影响,因此,对市场电价进行有效的预测建模将面临巨大的挑战。文中从实证分析的角度出发,首先对浙江发电市场的系统报价曲线进行分析,在此基础上提出一种报价曲线驱动的市场电价预测方法,并通过算例仿真表明此方法在实现上的方便、有效性。  相似文献   

13.
浙江省电力市场竞价分析   总被引:15,自引:4,他引:11  
浙江省电力市场采用差价合同与实时现货市场相结合的交易方式,在吸收澳大利亚国家电力市场模式的基础上,针对浙江电网的实际情况制定了市场规则。文中详细讨论了电力市场中市场支配力的内容、原因和分析方法,对浙江省电力市场的竞价机制进行了介绍。通过对2001年7月30日的电厂竞价数据的分析,研究了浙江省电力市场成员的市场支配力大小。分析结果表明浙江省电力市场中市场份额主要集中在3个发电商中,是一个高度集中的市场。  相似文献   

14.
基于BP网络的下一交易日无约束市场清算价格预测模型   总被引:22,自引:9,他引:22  
提出一种基于反向传播(BP)网络预测下一交易日无约束市场清算价格的方法。该方法去除了原始数据中的季节性趋势和增长趋势,用相关性分析技术选择输入量,遵循“重近轻远”的原则重新设计了拟合误差的代价函数,利用最新数据在线修正BP网络,并用美国加州电能交易所公布的真实数据进行仿真,结果令人满意。  相似文献   

15.
级联相关的神经网络模型在边际电价预测中的应用   总被引:12,自引:4,他引:12  
在实际的电力市场运作中,电厂的报价反映了电厂的运行成本和市场供求,决定电厂机组能否上网发电和上网电量。而报价的一个重要指标是预测的系统边际电价。因此,电力市场中的边际电价预测在发电厂的市场化运营中处于重要的地位,特别是对电力供应商的决策有重要意义。文中应用神经网络理论中的级联相关模型对电力系统的边际电价进行预测,优点在于避免了对网络结构的估计,网络在训练的过程中能够自适应地增加隐含节点,同时提出了在训练集中增加特殊数据点以提高预测精度的方法。通过New EnglandISO数据算例预测第2天的24h边际电价说明了这种方法的可行性,并用3层BP神经网络做了对比研究。  相似文献   

16.
电力市场中的边际电价预测   总被引:42,自引:7,他引:42  
在分析了系统边际价格(SMP)形成机理和影响因素的基础上,分别提出了基于累计式自回归滑动平均模型(ARIMA)和人工神经网络(ANN)的SMP预测方法,在这2种方法中都引入了市场供求指数(SDI)作为影响SMP的因素。通过对某省级发电市场真实数据的仿真结果表明,在引入SDI后,ARIMA模型和ANN模型的预测精度都得到了提高;同时,ANN模型比ARIMA模型更易于处理多种市场因素,若在模型中考虑更多的市场因素,则SMP预测的精度可进一步提高。  相似文献   

17.
基于MCP预测的发电侧定价方法   总被引:7,自引:2,他引:5  
随着我国电力系统解除管制和电力市场的逐步建立和完善,以及发电侧电力市场的建立,如何制订合理的发电价格成为研究重点。传统的方法大都以考虑电网的潮流约束为主,建立实时定价模型,忽视了发电方经济目标的要求。文中以发电方的经济目标为出发点,除传统的潮流约束外,把预测的平均成交电价、年度利润目标等一起作为约束条件建立定价模型,采用牛顿法计算发电电价。计算结果表明这种定价方法可以有效提高发电方利润。  相似文献   

18.
基于混沌学习算法的神经网络短期负荷预测   总被引:31,自引:0,他引:31  
基于混沌理论对电力负荷的复杂时间序列进行分析,得出该时间序列属于混沌序列的结论,就此提出了一种新的神经网络(NN)学习算法——混沌学习算法。该算法中的混沌轨道的游动性有利于系统跳出局域极值的束缚而寻求全局最优,这样克服了前馈NN 的BP学习算法所存在的本质问题,使NN训练的收敛性好、速度快、误差小。文中通过对实际系统负荷预测结果,与BP算法预测结果比较,证明了混沌学习算法的电力负荷短期预测具有明显好的效果。  相似文献   

19.
电力市场中预测问题的新内涵   总被引:6,自引:4,他引:6  
传统的负荷预测是电力系统规划与运行的基础工作,电力市场化的改革对负荷预测提出了更高的要求,赋予其新的内涵。文中探讨了电力市场中的预测问题,分别针对发电侧竞价和用户侧开放的电力市场,提出了一些新的预测内容和预测思想,包括扩展短期负荷预测、连续多日负荷曲线预测、电力市场价格预测、市场风险预测与评估、考虑需求侧管理影响的电力需求预测、用电需求曲线预测、基于价格弹性的需求预测等,指出了这些预测问题的研究热点和难点,探讨了未来的主要研究方向。  相似文献   

20.
应用人工神经网络进行中期电力负荷预报   总被引:17,自引:5,他引:17       下载免费PDF全文
应用人工神经网络(ANN)对电力负荷进行了中期预报,对ANN的主要参数作了比较计 算和优化调整,得到了较为满意的预报结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号