共查询到20条相似文献,搜索用时 46 毫秒
1.
基于神经网络的短期电价预测 总被引:5,自引:0,他引:5
利用系统旋转备用、历史负荷和清算电价对未来时段电价的影响来进行电价预测。以澳大利亚昆士兰州电力市场为背景,采用神经网络的方法,建立了提前1天电力市场清算电价短期预测模型。模型为3层BP神经网络结构,并采用昆士兰州电力市场1998年的电价数据进行了训练和预测分析,结果表明该模型具有良好的预测效果。 相似文献
2.
市场清算电价预测是电力市场中交易决策的基础。人工神经网络是电价预测较为理想的方法,但依然存在一些问题,如样本训练有时需要很长时间,存在收敛问题,特别是当样本特征量不明显的时候,这种现象更为突出。针对这一问题,利用自组织映射的聚类特性将历史数据进行特征分类和筛选处理,处理后形成的新数据用于训练三层BP神经网络,仿真结果表明,经过这种数据处理后,网络的收敛速度得到了显著提高,且预测效果良好。 相似文献
3.
市场清算电价预测是电力市场中交易决策的基础.人工神经网络是电价预测较为理想的方法,但依然存在一些问题,如样本训练有时需要很长时间,存在收敛问题,特别是当样本特征量不明显的时候,这种现象更为突出.针对这一问题,利用自组织映射的聚类特性将历史数据进行特征分类和筛选处理,处理后形成的新数据用于训练三层BP神经网络,仿真结果表明,经过这种数据处理后,网络的收敛速度得到了显著提高,且预测效果良好. 相似文献
4.
介绍了发电厂竞价上网辅助决策系统的构成,认为其中最主要的2个模块为成本分析和市场预测,并在出清电价预测方面提出了一种基于神经网络的电价预测方法. 相似文献
5.
基于遗传算法优化BP网络的提前一天市场清算电价预测 总被引:8,自引:0,他引:8
针对电力市场提前一天市场清算电价预测,考虑历史负荷和历史清算电价对未来时段电价的影响,分别采用BP神经网络和遗传算法优化BP网络的方法,建立了提前一天电力市场清算电价预测模型。并采用澳大利亚昆士兰州电力市场1998年的电价数据分别进行了训练和预测,对结果进行了比较分析。结果表明遗传算法优化BP网络模型具有良好的预测效果。 相似文献
6.
基于多因素小波分析的神经网络短期现货电价预测方法 总被引:2,自引:0,他引:2
一般采用小波分解的电价预测方法是将历史电价分解后分别预测,预测过程中没有引入其他电价影响因素,或者是直接引入未经小波分解的影响因素。提出一种小波分析与神经网络相结合的预测方法,将历史电价和历史负荷都进行小波多分辨率单尺度分解,分解成概貌电价、细节电价和概貌负荷、细节负荷。在此基础上,用历史概貌电价和概貌负荷序列训练BP神经网络,预测出未来的概貌电价;用历史细节电价和细节负荷序列训练BP神经网络,预测出未来的细节电价。将概貌电价和细节电价进行重构,得到最终的预测电价。对美国PJM电力市场的实际电价(LMP)进行预测,验证了该方法的有效性和可行性。 相似文献
7.
8.
基于BP神经网络的短期市场出清电价预测 总被引:2,自引:0,他引:2
在电力市场中,短期市场电价预测的准确与否,对发电厂的竞价决策具有关键性的影响。文章提出应用神经网络算法来模拟预测日前市场出清电价,以获取精确的预测结果,该方法可适用于原始数据有限的情况。利用电力系统历史负荷、历史清算电价、系统的旋转备用等影响因素作为分析因子,分析其对未来时段电力市场价格的影响,并对下一交易时段电价进行预测。以美国加利福尼亚州电力市场为背景,采用BP神经网络算法,应用MATLAB软件编程,建立电力市场清算电价短期预测模型。该模型结构为三层神经网络,通过网络的反向传播过程不断修正模型中的神经元连接权值和阈值,充分发挥BP网络局部搜索能力强的优点,实现对未来24小时市场出清电价的有效预测,并针对美国加州实际电力市场价格数据进行训练和预测分析,结果表明该模型具有良好的预测效果。 相似文献
9.
以美国加州电力市场为背景,在分析了市场清算电价(MCP)的影响因素的基础上,采用了一种基于反向传播(BP)网络预测下一日市场清算电价的方法。该方法考虑了系统供求关系、历史负荷、历史电价等对未来时段电价的影响,建立了一个单隐层的神经网络结构。预测模型融合了模糊理论,利用隶属函数对温度(最高温度、平均温度、最低温度)进行了模糊处理,将这些因素作为神经网络的输入量。在负荷高峰时段,往往存在市场外机组的调度和参与者的策略性投标等问题,这些因素共同作用容易造成电价尖峰。建立一个节假日模型来预测节假日的电价。采用美国加州电力市场的历史数据进行了训练和预测分析,结果表明该模型具有良好的预测效果。 相似文献
10.
电价是反映电力市场运营状况,评价市场竞争效率的核心指标,是电力市场决策的基础.阐述了电力市场电价预测问题的特点、内容和方法,分析和比较了短期预测和中长期预测的各种方法,指出了各种方法的优缺点,提出了一些提高预测精度的改进措施,并对电价预测中的一些关键问题进行了分析探讨. 相似文献
11.
12.
13.
14.
15.
级联相关的神经网络模型在边际电价预测中的应用 总被引:12,自引:4,他引:12
在实际的电力市场运作中,电厂的报价反映了电厂的运行成本和市场供求,决定电厂机组能否上网发电和上网电量。而报价的一个重要指标是预测的系统边际电价。因此,电力市场中的边际电价预测在发电厂的市场化运营中处于重要的地位,特别是对电力供应商的决策有重要意义。文中应用神经网络理论中的级联相关模型对电力系统的边际电价进行预测,优点在于避免了对网络结构的估计,网络在训练的过程中能够自适应地增加隐含节点,同时提出了在训练集中增加特殊数据点以提高预测精度的方法。通过New EnglandISO数据算例预测第2天的24h边际电价说明了这种方法的可行性,并用3层BP神经网络做了对比研究。 相似文献
16.
17.
18.
基于混沌学习算法的神经网络短期负荷预测 总被引:31,自引:0,他引:31
基于混沌理论对电力负荷的复杂时间序列进行分析,得出该时间序列属于混沌序列的结论,就此提出了一种新的神经网络(NN)学习算法——混沌学习算法。该算法中的混沌轨道的游动性有利于系统跳出局域极值的束缚而寻求全局最优,这样克服了前馈NN 的BP学习算法所存在的本质问题,使NN训练的收敛性好、速度快、误差小。文中通过对实际系统负荷预测结果,与BP算法预测结果比较,证明了混沌学习算法的电力负荷短期预测具有明显好的效果。 相似文献
19.