首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以N,N,N′,N′-四辛基-2-甲基-3-氧戊二酰胺(Me-TODGA)或N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)为萃取剂、磷酸三丁酯(TBP)为相改良剂、煤油为稀释剂,对比研究了水相酸度、萃取剂浓度、锶浓度、温度对Me-TODGA-TBP体系和TODGA-TBP体系萃取Sr2+的影响,并采用斜率法确定了萃合物的组成。结果表明,2种酰胺荚醚萃取Sr2+的分配比(DSr)随HNO3浓度(c(HNO3)=0.1~2.7 mol/L)、萃取剂浓度(c(萃取剂)=0.05~0.3 mol/L)的增加而增大,随Sr2+浓度的升高略有下降,随温度的升高而下降。2种萃取剂的萃合物组成分别为Sr(NO3)2•3Me-TODGA和Sr(NO3)2•2TODGA。萃取反应的ΔH分别为-69.46 kJ/mol和-51.39 kJ/mol,ΔS分别为-190.5 J/(mol•K)和-128.4 J/(mol•K),ΔG分别为-12.68 kJ/mol和-13.12 kJ/mol。相比之下,Me-TODGA萃取Sr2+的分配比不到TODGA的1/5。  相似文献   

2.
合成了新型酰胺类萃取剂N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)和N,N-二己基辛酰胺(DHOA),研究了以正十二烷为溶剂时,该萃取体系在硝酸介质中对碱土金属的萃取行为,考察了萃取体系变化、酸度、金属离子强度、盐析剂离子强度及温度对萃取分配比的影响.同时对萃合物的化学组成及萃取机理进行了分析和讨论.研究结果表明:TODGA与M(Ⅱ)形成的萃合物分子为M(N03)2·2TODGA(org);在293 K时,TODGA萃取Sr(Ⅱ)的△G=(-2.08±0.06)kJ/mol,△H=(-24.30±1.45)kJ/mol,△S=(-75.80±4.74)J/(mol· K).在萃取过程中没有形成三相,提出了从高放废液(HLLW)中分离回收Sr的初步方案.  相似文献   

3.
<正>以N,N′-二甲基-N,N′-二辛基-3-氧杂-戊二酰胺(DMDODGA,L,结构式见图1)为萃取剂实现了对硝酸溶液中NpO_2~+、UO_2~(2+)、Am~(3+)和Pu~(4+)的萃取(图2)。与对称的四烷基-3-氧杂-戊二酰胺配体,如N,N,N′,N′-四辛基-3-氧杂-戊二酰胺(TODGA,L′)不能萃取Np(Ⅴ)的性能相反,DMDODGA对硝酸溶液中的Np(Ⅴ)和其他价态锕系离子表现出相当的萃取能力。通过UV-Vis-NIR吸收光谱确定了NpO_2~+与DMDODGA在有  相似文献   

4.
合成了水溶性的2,6-二[1-(羟丙基)-1H-1,2,3-三唑-4-基]吡啶(PTD),研究了以N,N,N′,N′-四辛基-3-氧杂戊二酰胺(TODGA)为萃取剂、正十二烷为稀释剂时,PTD对Am和Eu的反萃行为。研究了两相接触时间、PTD浓度、初始硝酸浓度和温度对Am和Eu分配比的影响。结果表明:Am与PTD形成1∶1型和1∶2型配合物,Eu与PTD形成1∶1型配合物;PTD反萃TODGA-TBP中Am和Eu的反应均为吸热过程。在PTD浓度一定的情况下,反萃硝酸浓度小于0.7 mol/L时,PTD可以实现TODGA中的Am与Eu的反萃分离。  相似文献   

5.
研究了以N,N,N’,N’-四辛基-3-氧戊二酰胺(TODGA)和N,N-二己基辛酰胺(DHOA)为萃取剂、正十二烷为稀释剂对Am(Ⅲ)和三价镧系元素的萃取行为,主要考察了萃取剂浓度、HNO3浓度、NaNO3浓度、金属离子浓度和温度的影响。结果表明:随着TODGA浓度的增加,TODGA/正十二烷和TODGA-DHOA/正十二烷两种萃取体系对Am(Ⅲ)和三价镧系元素的萃取分配比显著增加,DHOA对三价锕系和镧系萃取能力很弱,而DHOA的加入,对TODGA/正十二烷萃取Am(Ⅲ)和三价镧系元素具有一定抑制作用。TODGA萃取三价镧系元素的分配比随着镧系原子序数的增加而增加,Am的分配比与Eu相近。TODGA萃取稀土元素是放热反应,萃取过程中焓变起主导作用,吉布斯自由能变(-ΔG)变化的规律也表明随着镧系原子序数的增加,TODGA对其萃取能力增强。通过对TODGA萃取Am(Ⅲ)和三价镧系元素机理探讨,得到萃取反应方程式均为:M3+aq+3NO-3,aq+3TODGAorg→M(NO3)3·3TODGAorg  相似文献   

6.
以N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)为萃取剂、正十二烷为稀释剂,研究了该萃取体系在恒界面池中萃取Sr(Ⅱ)的动力学,考察了搅拌转速、界面面积、萃取剂浓度、金属离子浓度、酸度和温度等因素对萃取行为的影响,并推导了相应的萃取机理。结果表明:(1) 搅拌转速在130r/min以下时,0.1mol/L TODGA/正十二烷萃取Sr(Ⅱ)的过程为扩散控制类型,在搅拌转速为150r/min以上时,则可能属于化学反应控制的动力学控制模式;(2) 求得了在(170±2)r/min、温度为(25±0.1)℃时0.1mol/L TODGA/正十二烷萃取Sr(Ⅱ)的初始速率方程: r0= ((dcorg(M)/dt) |t=0)=k• (S/V)c0.91aq,0(Sr)c0.73aq,0(HNO3)c0.87org,0 (TODGA) 在25℃下,求得表观萃取速率常数k=(22.5±2.5)×10-3mol-1.51•L1.51•min-1•cm;(3) 0.1 mol/L TODGA/正十二烷萃取Sr(Ⅱ)的初始速率随着温度的升高而增大,求得表观萃取活化能Ea(Sr(Ⅱ))=(24.3±0.7)kJ/mol。  相似文献   

7.
曹正白  包亚之 《核技术》1993,16(6):380-384
对二(2-乙基己基)亚砜(DEHSO)和磷酸三丁酯(TBP)萃取Th、U的性能进行了比较,研究了水相HNO_3浓度、萃取剂浓度、温度等因素对萃取Th、U的影响。DEHSO与U、Th和HNO_3形成的萃合物为UO_2(NO_3)_2·2DEHSO,Th(NO_3)_4·2DEHSO和HNO_3·DEHSO。在本实验浓度条件下测得萃取U、Th及NHO_3反应的平衡常数为14.9、0.027、0.13,U、Th萃取反应的热焓为-44.30和-42.50kJ/mol。同时试验了有机相中U(Ⅵ)和Th(Ⅳ)的反萃。  相似文献   

8.
以正十二烷作为稀释剂,研究了N,N'-二(2-乙基己基)二甘酰胺酸(HDEHDGA,简称HL)萃取剂对硝酸介质中Dy(Ⅲ)离子的萃取性能。结果表明:该萃取剂对Dy(Ⅲ)有良好的萃取性能,在硝酸浓度为0.3~4.0mol/L时,Dy(Ⅲ)的分配比(D(Dy))随水溶液中平衡酸度的增加先减小后增大,在HNO_3浓度大约为1.0mol/L时,分配比最小。萃取分配比随水相硝酸浓度变化的关系表明,HDEHDGA萃取Dy(Ⅲ)的机理随硝酸浓度变化而不同。从3.0mol/L HNO_3中萃取Dy(Ⅲ)的分配比与萃取剂浓度及硝酸根浓度的关系表明,萃取过程中HDEHDGA主要以中性萃取剂形式与Dy(Ⅲ)配位,萃取反应方程式可能为:Dy(Ⅲ)+2HL+3NO_3~-=Dy(Ⅲ))(HL)_2(NO_3)_3该反应为放热反应,反应的热焓为-63.38kJ/mol,降低萃取温度有利于HDEHDGA对Dy(Ⅲ)的萃取。  相似文献   

9.
237Np半衰期较长,具有较高的生物毒性,使其成为高放废液非α化过程中重点关注的核素之一。本工作采用新型的N,N′-二甲基-N,N′-二辛基-3-氧杂-戊二酰胺(DMDODGA)为萃取剂,研究了萃取剂浓度、水相初始硝酸浓度和温度等因素对DMDODGA萃取Np(Ⅳ)、Np(Ⅴ)、Np(Ⅵ)的影响。结果表明:随着DMDODGA浓度和水相初始硝酸浓度的增加,Np(Ⅳ)、Np(Ⅴ)、Np(Ⅵ)的分配比均增大。萃取剂浓度小于0.005 mol/L时,DMDODGA与Np(Ⅳ)生成1∶2型萃合物;萃取剂浓度大于0.005 mol/L时,DMDODGA与Np(Ⅳ)生成1∶3型萃合物。萃取剂浓度在0.1~1.0 mol/L范围内,DMDODGA与Np(Ⅴ)、Np(Ⅵ)均生成1∶2型萃合物。DMDODGA萃取Np(Ⅳ)、Np(Ⅴ)、Np(Ⅵ)的ΔH分别为-59.55、-22.02、-31.40 kJ/mol,3个反应均为放热反应,降低温度有利于反应的正向进行。  相似文献   

10.
次锕系核素(主要为Am、Cm和Np)是放射性废物中长期放射性毒性的最大贡献体,将这些次锕系核素从废物中去除后可以将必要的储存时间由原来的大于106年减少到不到103年。近年来,二甘醇二酰胺(两个酰胺基团之间通过醚基连接)作为三齿试剂与金属离子配位得到了广泛的研究。在这类试剂中,N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)被认为从高放废液(HLLW)中分离三价锕系和镧系具有较大的应用前景。本工作以TODGA和N,N-二己基辛酰胺(DHOA)为萃取剂,研究了以正十二烷为稀释剂,二者对Np(Ⅳ)、Np(Ⅴ)和Np(Ⅵ)的萃取行为,主要考察了萃取剂浓度、HNO3浓度和NaNO3浓度的影响。结果表明:TODGA和DHOA对Np(Ⅳ)、Np(Ⅴ)和Np(Ⅵ)的萃取分配比大小顺序均为:D(Np(Ⅳ))>D(Np(Ⅵ))>D(Np(Ⅴ)),并且均对Np(Ⅴ)的萃取能力较小;TODGA/正十二烷体系中加入DHOA时,对Np(Ⅳ,Ⅴ,Ⅵ)萃取具有一定的反协同效应;TODGA萃取Np(Ⅳ,Ⅴ,Ⅵ)的方程式分别为:Np4+(aq)+4NO-3(aq)+3TODGA(org→)Np(NO3)4.3TODGA(org)NpO+2(aq)+NO-3(aq)+TODGA(org→)NpO2(NO3).TODGA(org)NpO2+2(aq)+2NO-3(aq)+2TODGA(org→)NpO2(NO3)2.2TODGA(org)  相似文献   

11.
以N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)为代表的酰胺荚醚类萃取剂可以有效萃取高放废液中的An(Ⅲ)和Ln(Ⅲ),为防止Zr4+、Pd2+等裂片元素萃入有机相,通常需要加入H2C2O4作为水相络合剂,目前,H2C2O4对TODGA萃取Ln(Ⅲ)的影响尚未报道。本工作研究了HNO3、H2C2O4浓度对TODGA或TODGA+TBP体系萃取Nd3+的影响,同时测定了有机相中的H2C2O4浓度,并用紫外-可见吸收光谱分析了有机相中的H2C2O4与有机相中Nd3+的配位情况。研究结果表明:HNO3浓度在1.0~3.0 mol/L的范围内,Nd3+的分配比D(Nd3+)随HNO3浓度的增加而增加;H2C2O4浓度在0.1~0.5 mol/L的范围内,D(Nd3+)随H2C2O4浓度的增加而增加。HNO3浓度在1.0~3.0 mol/L的范围内,萃入有机相中H2C2O4浓度随HNO3浓度的增加而减小,且存在于有机相中的H2C2O4并未与有机相Nd3+配位。  相似文献   

12.
以正十二烷为稀释剂,研究了甲基膦酸二甲庚酯(DMHMP)萃取剂对硝酸介质中Zr(Ⅳ)的萃取性能。从3.0 mol/L HNO_3中萃取Zr(Ⅳ)的分配比与萃取剂浓度及硝酸根浓度的关系表明:萃取过程中DMHMP以中性萃取剂形式与Zr(Ⅳ)配位,萃取反应方程式主要为:Zr~(4+)+2DMHMP+4NO~-_3=Zr(NO_3)_4·2DMHMP随着硝酸浓度的增大,还会生成Zr(NO_3)_4·2DMHMP·2HNO_3和Zr(NO_3)_4·2DMHMP·3HNO_3。该反应为放热反应,降低温度有利于DMHMP对Zr(Ⅳ)的萃取。  相似文献   

13.
TODGA/正十二烷萃取Am(Ⅲ)的动力学   总被引:1,自引:0,他引:1  
以N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)为萃取剂,正十二烷为稀释剂,研究了该萃取体系在恒界面池中萃取Am(Ⅲ)的动力学,考察了搅拌转速、两相界面面积、萃取剂浓度、金属离子浓度、酸度和温度等因素对Am(Ⅲ)萃取行为的影响,并推导了相应的萃取机理。结果表明:(1) 搅拌转速在130 r/min以下时,0.1 mol/L TODGA/正十二烷萃取Am(Ⅲ)的过程为扩散控制类型,在搅拌转速为150 r/min以上时,则属于化学反应控制的动力学控制模式;(2) 求得了在(170±2) r/min、温度为(25±0.1) ℃时0.1 mol/L TODGA/正十二烷萃取Am(Ⅲ)的初始速率方程:
r0=(dcorg(M)/dt)t=0=k•(S/V)c0.94aq,0(Am)c1.05aq,0(HNO3)c1.19org,0(TODGA)
在25℃下,求得表观速率常数k=(24.2±3.4)×10-3mol-2.18•L2.18•min-1•cm;(3) 0.1mol/L TODGA/正十二烷萃取Am(Ⅲ)的初始速率随着温度的升高而增大,求得表观活化能Ea=(25.94±0.98)kJ/mol。  相似文献   

14.
本文在带有阴阳极的恒界面池中研究了HNO_3-N_2H_5NO_3(H_2O)/UO_2(NO_3)_2-HNO_3(30%TBP-煤油)体系在U(Ⅵ)电解还原过程中的U(Ⅵ)反萃和U(Ⅳ)萃取动力学。这是U(Ⅵ)电还原反萃动力学研究的第二步。根据实验结果和数据处理,得到U(Ⅵ)反萃和U(Ⅳ)萃取过程的表观活化能分别为36.02kJ/mol和21.13kJ/mol;U(Ⅵ)反萃和U(Ⅳ)萃取速率随两相搅拌速率的增大而增大;U(Ⅵ)反萃和U(Ⅳ)萃取过程均由扩散控制。随着阴极电位的降低,U(Ⅵ)反萃和U(Ⅳ)萃取速率均增大。  相似文献   

15.
研究了N,N,N′,N′-四异丁基-3-氧杂戊二酰胺(TiBOGA)-40%正辛醇/煤油对超铀元素及Tc的萃取,研究结果表明,0.2mol/L,TiBOGA-40%正辛醇/煤油对Tc(Ⅶ),Am(Ⅲ),Np(Ⅳ),Np(Ⅴ),Pu(Ⅲ),Pu(Ⅳ)均有一定萃取能力,在酸度为1mol/L HNO3的模拟料液中,其分配比分别为:2.25,>2000,43,0.734,>2000,34。TiBOGA-40%正辛醇/煤油对各种离子的萃取能力受酸度和盐析剂浓度影响较大,用0.1mol/L HNO3能将除Am(Ⅲ)以外的其它几种离子从有机相中反萃下来。0.6mol/L H2C2O4对超铀元素的反萃效果都很好,经过1次或2次反萃,反萃率均可达99%以上。  相似文献   

16.
正为了核能的可持续发展,世界各国科学家开发了一系列用于从乏燃料的硝酸溶液中选择性分离所有锕系元素的萃取剂。其中,四烷基取代的双酰胺荚醚类萃取剂(如N,N,N′,N′-四正辛基-3-氧杂-戊二酰胺(TODGA)和N,N,N′,N′-四异丁基-3-氧杂-戊二酰胺(TiBDGA))有较好的应用前景。  相似文献   

17.
酰胺荚醚对锶的萃取行为研究   总被引:2,自引:0,他引:2  
研究了3种荚醚N,N,N′,N-′四丁基-3氧-戊二酰胺(TBOPDA)、N,N,N′,N-′四丁基-3氧-戊二酰胺(TiBOPDA)和N,N,N′,N-′四丁基-3氧-戊二酰胺(TBDOODA)在硝酸介质中对锶的萃取行为,稀释剂为40%辛醇-煤油。硝酸浓度增加,锶的分配比随这增加,达到最大值后再下降。研究确定了萃合物的组成和萃取反应机理。萃取反应为:23^- Sr^2 iS0→Sr(NO3)2.iS。(S代表萃取剂),对TBOPDA和TiBOPDA,i=3;对TBDOODA,i=2.5。萃取过程为一放热反应,对TiBOPDA、TBOPDA和TBDOODA,萃取反应的焓变分别为-55.79、-50.48和-53.11kJ/mol;熵值变化分别为-122.9、-117.6和-141.6J.mol.K;自由能变化分别为-19.16、-15.33和-10.91kJ/mol。TBOPDA和TBDOODA萃取锶后,羰基与烷氧基均发生了大位移,两者均参与成键作用。  相似文献   

18.
冠醚萃取钍(Ⅳ)的化学平衡及其萃合物的红外光谱   总被引:2,自引:0,他引:2  
本文研究了数种冠醚的1,2-二氯乙烷溶液从硝酸、盐酸和苦味酸等水溶液中萃取钍的行为。在硝酸介质中,钍与二环己基-18-冠-6(DC18C6)或二环己基-24-冠-8(DC24C8)形成了萃合物Th(NO_3)_4·2L·HNO_3(L为冠醚)。其相应的萃取平衡常数(25℃)经测定分别为:K_(DC18C6)=3.98和K_(DC24C8)=6.30。 测定了萃合物Th(NO_3)_4·2DC18C6·HNO_3和Th(NO_3)_4·2DC24C8·HNO_3的红外光谱。差示光谱的特征吸收峰表明,金属离子和冠醚环上氧配位原子之间可能存在直接的键合,以及萃合物中NO_3根参与配位。  相似文献   

19.
双配位基有机磷萃取剂DHDECMP萃取Am(Ⅲ)的研究   总被引:3,自引:1,他引:2  
本文研究了用双配位基有机磷萃取剂N,N—二乙胺甲酰甲撑膦酸二已酯(DHDECMP)萃取镅的各种影响因素,包括DHDECMP的纯化,稀释剂的选择以及硝酸浓度,萃取剂浓度,盐析剂浓度,萃取平衡时间和温度等,并测定了模拟料液的Am的分配系数。还确定了反萃条件。研究了萃取机理,其主要萃取反应为: Am~(3 ) 3 NO_3~- 3DHDECMPAm(NO_3)_3.3 DHDECMP萃取过程是放热反应,其反应热△H_(Am)■-7.6 kcal/mol。  相似文献   

20.
甲基膦酸二-(1-)甲庚酯萃取硝酸锆的机理   总被引:2,自引:2,他引:0  
中性磷型萃取剂甲基膦酸二-(1-)甲庚酯(简称DMHMP)在硝酸溶液中萃取硝酸锆生成三种形式萃合物:Zr(NO_3)_4·2DMHMP,Zr(NO_3)_4·2DMHMP·2HNO_3和Zr(NO_3)_4·2DMHMP·3HNO_3。用对数函数外推和优选计算相结合的方法,求得萃取反应平衡常数:K_(020)=1.09×10~3,K_(022)=6.25×10~3,K_(023)=1.50×10~4,求得Zr(NO_3)_i~(4-i)的各级积累稳定常数β_1=2.13,β_2=2.62,β_3=3.39,β_4=6.18。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号