首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The modulatory effect of myosin regulatory light chain phosphorylation in mammalian skeletal muscle, first documented as posttetanic potentiation of twitch tension, was subsequently shown to enhance the expression and development of tension at submaximal levels of activating calcium. Structural analyses demonstrated that thick filaments with phosphorylated myosin regulatory light chains appeared disordered: they lost the near-helical, periodic arrangement of myosin head characteristic of the relaxed state. We suggested that disordered heads may be more mobile than ordered heads and are likely to spend more time close to their binding sites on thin filaments. In this study we determined that the physiological effects of phosphorylation could be mimicked by decreasing the lattice spacing between the thick and the thin filaments, either by osmotic compression with dextran or by increasing the sarcomere length of permeabilized rabbit psoas fibers. Phosphorylation of regulatory light chains by incubation of permeabilized fibers with myosin light chain kinase and calmodulin, followed by low levels of activating calcium, potentiated tension development at resting or lower sarcomere lengths in the absence of dextran but had no additional effect on tension potentiation or development in fibers with decreased lattice spacing due to either osmotic compression or increased sarcomere length.  相似文献   

2.
To identify the structural basis for the observed physiological effects of myosin regulatory light chain phosphorylation in skinned rabbit skeletal muscle fibers (potentiation of force development at low calcium), thick filaments separated from the muscle in the relaxed state, with unphoshorylated light chains, were incubated with specific, intact, myosin light chain kinase at moderate (pCa 5.0) and low (pCa 5.8) calcium and with calcium-independent enzyme in the absence of calcium, then examined as negatively stained preparations, by electron microscopy and optical diffraction. All such experimental filaments became disordered (lost the near-helical array of surface myosin heads typical of the relaxed state). Filaments incubated in control media, including intact enzyme in the absence of calcium, moderate calcium (pCa 5.0) without enzyme, and bovine serum albumin substituting for calcium-independent myosin light chain kinase, all retained their relaxed structure. Finally, filaments disordered by phosphorylation regained their relaxed structure after incubation with a protein phosphatase catalytic subunit. We suggest that the observed disorder is due to phosphorylation-induced increased mobility and/or changed conformation of myosin heads, which places an increased population of them close to thin filaments, thereby potentiating actin-myosin interaction at low calcium levels.  相似文献   

3.
By using synchrotron radiation and an imaging plate for recording diffraction patterns, we have obtained high-resolution x-ray patterns from relaxed rabbit psoas muscle at temperatures ranging from 1 degree C to 30 degrees C. This allowed us to obtain intensity profiles of the first six myosin layer lines and apply a model-building approach for structural analysis. At temperatures 20 degrees C and higher, the layer lines are sharp with clearly defined maxima. Modeling based on the data obtained at 20 degrees C reveals that the average center of the cross-bridges is at 135 A from the center of the thick filament and both of the myosin heads appear to wrap around the backbone. At 10 degrees C and lower, the layer lines become very weak and diffuse scattering increases considerably. At 4 degrees C, the peak of the first layer line shifts toward the meridian from 0.0047 to 0.0038 A(-1) and decreases in intensity approximately by a factor of four compared to that at 20 degrees C, although the intensities of higher-order layer lines remain approximately 10-15% of the first layer line. Our modeling suggests that as the temperature is lowered from 20 degrees C to 4 degrees C the center of cross-bridges extends radially away from the center of the filament (135 A to 175 A). Furthermore, the fraction of helically ordered cross-bridges decreases at least by a factor of two, while the isotropic disorder (the temperature factor) remains approximately unchanged. Our results on the order/disordering effects of temperature are in general agreement with earlier results of Wray [Wray, J. 1987. Structure of relaxed myosin filaments in relation to nucleotide state in vertebrate skeletal muscle. J. Muscle Res. Cell Motil. 8:62a (Abstr.)] and Lowy et al. (Lowy, J., D. Popp, and A. A. Stewart. 1991. X-ray studies of order-disorder transitions in the myosin heads of skinned rabbit psoas muscles. Biophys. J. 60:812-824). and support Poulsen and Lowy's hypothesis of coexistence of ordered and disordered cross-bridge populations in muscle (Poulsen, F. R., and J. Lowy. 1983. Small angle scattering from myosin heads in relaxed and rigor frog skeletal muscle. Nature (Lond.). 303:146-152.). However, our results added new insights into the disordered population. Present modeling together with data analysis (Xu, S., S. Malinchik, Th. Kraft, B. Brenner, and L. C. Yu. 1997. X-ray diffraction studies of cross-bridges weakly bound to actin in relaxed skinned fibers of rabbit psoas muscle. Biophys. J. 73:000-000) indicate that in a relaxed muscle, cross-bridges are distributed in three populations: those that are ordered on the thick filament helix and those that are disordered; and within the disordered population, some cross-bridges are detached and some are weakly attached to actin. One critical conclusion of the present study is that the apparent order <--> disorder transition as a function of temperature is not due to an increase/decrease in thermal motion (temperature factor) for the entire population, but a redistribution of cross-bridges among the three populations. Changing the temperature leads to a change in the fraction of cross-bridges located on the helix, while changing the ionic strength at a given temperature affects the disordered population leading to a change in the relative fraction of cross-bridges detached from and weakly attached to actin. Since the redistribution is reversible, we suggest that there is an equilibrium among the three populations of cross-bridges.  相似文献   

4.
A single fibre bundle from rat soleus muscle was chemically skinned with saponin and the transfer of myosin heads from the thick filaments to the thin filaments at a sarcomere length of 2.4 microm was measured as a function of Ca2+ concentration using an x-ray diffraction method at 4-7 degrees C. In the relaxed state, the 1,0 spacing was 42.08 nm. The spacing showed no significant decrease when the Ca2+ concentration was below the threshold (-log10 [Ca2+] or pCa 5.8). No significant transfer of the myosin heads occurred when the Ca2+concentration was below the threshold (pCa 5.8). When the muscle was maximally activated at pCa 4.4, the spacing decreased to 40.35 nm. During the maximum isometric contraction at pCa 4.4, 54. 9 +/- 6.5% (+/-SE of the mean) of the myosin heads were transferred to the thin filaments. The transfer of the myosin heads was approximately proportional to relative tension. These results suggest that myosin heads of both fast-twitch and slow-twitch skeletal muscles transferred on the common movement as a function of Ca2+ concentration.  相似文献   

5.
In the work, an original computer system, called Muscle, is described. The Muscle allowed modelling of the whole thick filament with different arrangements of the myosin tails and myosin heads. Computer simulation and animation have revealed that only the model of the thick filament with asymmetrical configuration of the crossbridges has 3-fold rotational symmetry and assures matching between many thousands specific binding-sites on myosin heads and actin monomers. The Muscle delivered a number of arguments that the hypothesis of near parallel packing of the myosin tails, as well as oar-like or lever-arm-like work of the myosin crossbridges, is unfounded. We have presented advantages of the computer simulation in studies of complicated 3D molecular objects especially when direct observation is technically impossible.  相似文献   

6.
Muscle thick filaments are stable assemblies of myosin and associated proteins whose dimensions are precisely regulated. The mechanisms underlying the stability and regulation of the assembly are not understood. As an approach to these problems, we have studied the core proteins that, together with paramyosin, form the core structure of the thick filament backbone in the nematode Caenorhabditis elegans. We obtained partial peptide sequences from one of the core proteins, beta-filagenin, and then identified a gene that encodes a novel protein of 201-amino acid residues from databases using these sequences. beta-Filagenin has a calculated isoelectric point at 10.61 and a high percentage of aromatic amino acids. Secondary structure algorithms predict that it consists of four beta-strands but no alpha-helices. Western blotting using an affinity-purified antibody showed that beta-filagenin was associated with the cores. beta-Filagenin was localized by immunofluorescence microscopy to the A bands of body-wall muscles, but not the pharynx. beta-filagenin assembled with the myosin homologue paramyosin into the tubular cores of wild-type nematodes at a periodicity matching the 72-nm repeats of paramyosin, as revealed by immunoelectron microscopy. In CB1214 mutants where paramyosin is absent, beta-filagenin assembled with myosin to form abnormal tubular filaments with a periodicity identical to wild type. These results verify that beta-filagenin is a core protein that coassembles with either myosin or paramyosin in C. elegans to form tubular filaments.  相似文献   

7.
The arrangement and shape of myosin heads in relaxed muscle have been determined by analysis of low-angle X-ray diffraction data from a very highly ordered vertebrate muscle in bony fish. This reveals the arrangement and interactions between the two heads of the same myosin molecule, the shape of the resting myosin head (M.ADP.Pi) assuming a putative hinge between the myosin catalytic domain and the light chain binding-domain, and the way that the actin-binding sites on myosin are arrayed around the actin filaments in the bony fish muscle A-band cell unit. The results are discussed in terms of possible force-generating mechanisms. Changes in myosin head shape or tilt have been implicated in the mechanism of force generation. The myosin head arrangement, including perturbations from perfect helical symmetry, has all heads oriented roughly the same way up (there is only a small range of rotations around the head long axis). X-ray data do not define the absolute polarity of the myosin head array. The resting head rotation is either similar to (65 degrees difference) or opposite to (115 degrees difference) the rotation in the rigor state. If the rotations are similar, probably the more likely possibility, then the average relative axial displacement of the inner and outer ends of the heads from the resting state to rigor is about 140 to 150 A. If (less likely) the resting head rotation is opposite to rigor, then the heads would need to turn over (i.e. rotate about 115 degrees around their own long axes) and the mean relative axial displacement from relaxed to rigor would only be 20 to 30 A.  相似文献   

8.
Conventional myosin II plays a fundamental role in the process of cytokinesis where, in the form of bipolar thick filaments, it is thought to be the molecular motor that generates the force necessary to divide the cell. In Dictyostelium, the formation of thick filaments is regulated by the phosphorylation of three threonine residues in the tail region of the myosin heavy chain. We report here on the effects of this regulation on the localization of myosin in live cells undergoing cytokinesis. We imaged fusion proteins of the green-fluorescent protein with wild-type myosin and with myosins where the three critical threonines had been changed to either alanine or aspartic acid. We provide evidence that thick filament formation is required for the accumulation of myosin in the cleavage furrow and that if thick filaments are overproduced, this accumulation is markedly enhanced. This suggests that myosin localization in dividing cells is regulated by myosin heavy chain phosphorylation.  相似文献   

9.
The ordered array of myosin heads, characteristic of relaxed striated muscle thick filaments, is reversibly disordered by phosphorylating myosin regulatory light chains, decreasing temperature and/or ionic strength, increasing pH, and depleting nucleotide. In the case of light chain phosphorylation, disorder, most likely due to a change in charge affecting the light chain amino-terminus, reflects increased myosin head mobility, thus increased accessibility to actin, and results in increased calcium sensitivity of tension development. Thus, interactions between the unphosphorylated regulatory light chain and the filament backbone may help maintain the overall order of the relaxed filament. To define this relationship, we have examined the structural and functional effects of such manipulations as exchanging wild-type smooth and skeletal myosin light chains into permeabilized rabbit psoas fibers and removing regulatory light chains (without exchange) from such fibers. We have also compared the structural and functional parameters of biopsied fibers from patients with severe familial hypertrophic cardiomyopathy due to a single amino acid substitution in the regulatory light chains to those exhibited by fibers from normal relatives. Our results support a role for regulatory light chains in reversible ordering of myosin heads and suggest that economy of energy utilization may provide for evolutionary preservation of this function in vertebrate striated muscle.  相似文献   

10.
The interaction of myosin and actin is by intracellular Ca2+ concentration, which in turn is controlled by the sarcoplasmic reticulum. In muscle--including cardiac muscle--of vertebrates, and some invertebrates, the site of Ca2+ control is in the thin, actin-containing filaments. These filaments contain tropomyosin and troponin; the latter is a complex of three subunits. When Ca2+ combines with troponin C, the Ca-binding subunit, a shift occurs in the position of tropomyosin that makes it possible for the myosin heads to bind to actin. This process is inhibited by a conformational change in troponin C, resulting in the release of the troponin complex from one of the binding sites on the thin filament. This process exhibits cooperative aspects which have been analyzed in terms of the Ca-binding process and the effect of Ca2+ on actomyosin ATPase activity.  相似文献   

11.
EPR of spin labeled TnC at Cys98 was used to explore the possible structural coupling between TnC in the thin filament and myosin trapped in the intermediate states of ATPase cycle. Weakly attached myosin heads (trapped by low ionic strength, low temperature and ATP) did not induce structural changes in TnC as compared to relaxed muscle, as spin labeled TnC displayed the same narrow orientational distribution [Li, H.-C., and Fajer, P. G. (1994) Biochemistry 33, 14324]. Ca2+-binding alone resulted in disordering of the labeled domain of TnC. Additional conformational changes of TnC occurred upon the attachment of strongly bound, prepower stroke myosin heads (trapped by AlF4-). These changes were not present in ghost fibers which myosin had been removed, excluding direct effects of AlF4- on the orientation of TnC in muscle fibers. The postpower stroke heads (rigor.ADP/Ca2+ and rigor/Ca2+) induced further changes in the orientational distribution of labeled domain of TnC irrespective of the degree of cooperativity in thin filaments. We thus conclude that troponin C in thin filaments detects structural changes in myosin during force generation, implying that there is a structural coupling between actomyosin and TnC.  相似文献   

12.
Displacements of single one-headed myosin molecules in a sparse myosin-rod cofilament were measured from bead displacements at various angles relative to an actin filament by dual optical trapping nanometry. The sparse myosin-rod cofilaments, 5-8 micron long, were synthesized by slowly mixing one-headed myosin prepared by papain digestion with myosin rods at molar ratios of 1:400 to 1:1500, so that one to four one-headed myosin molecules were on average scattered along the cofilament. The bead displacement was approximately 10 nm at low loads ( approximately 0.5 pN) and at angles of 5-10 degrees between the actin and myosin filaments (near physiologically correct orientation). The bead displacement decreased with an increase in the angle. The bead displacement at nearly 90 degrees was approximately 0 nm. When the angle was increased to approximately 150 degrees-170 degrees, the bead displacements increased to 5 nm. A native two-headed myosin showed similar size and orientation dependence of bead displacements as a one-headed myosin.  相似文献   

13.
We previously discovered a cellular isoform of titin (originally named T-protein) colocalized with myosin II in the terminal web domain of the chicken intestinal epithelial cell brush border cytoskeleton (Eilertsen, K.J., and T.C.S. Keller. 1992. J. Cell Biol. 119:549-557). Here, we demonstrate that cellular titin also colocalizes with myosin II filaments in stress fibers and organizes a similar array of myosin II filaments in vitro. To investigate interactions between cellular titin and myosin in vitro, we purified both proteins from isolated intestinal epithelial cell brush borders by a combination of gel filtration and hydroxyapatite column chromatography. Electron microscopy of brush border myosin bipolar filaments assembled in the presence and absence of cellular titin revealed a cellular titin-dependent side-by-side and end-to-end alignment of the filaments into highly ordered arrays. Immunogold labeling confirmed cellular titin association with the filament arrays. Under similar assembly conditions, purified chicken pectoralis muscle titin formed much less regular aggregates of muscle myosin bipolar filaments. Sucrose density gradient analyses of both cellular and muscle titin-myosin supramolecular arrays demonstrated that the cellular titin and myosin isoforms coassembled with a myosin/titin ratio of approximately 25:1, whereas the muscle isoforms coassembled with a myosin:titin ratio of approximately 38:1. No coassembly aggregates were found when cellular myosin was assembled in the presence of muscle titin or when muscle myosin was assembled in the presence of cellular titin. Our results demonstrate that cellular titin can organize an isoform-specific association of myosin II bipolar filaments and support the possibility that cellular titin is a key organizing component of the brush border and other myosin II-containing cytoskeletal structures including stress fibers.  相似文献   

14.
Muscle contraction is driven by a change in shape of the myosin head region that links the actin and myosin filaments. Tilting of the light-chain domain of the head with respect to its actin-bound catalytic domain is thought to be coupled to the ATPase cycle. Here, using X-ray diffraction and mechanical data from isolated muscle fibres, we characterize an elastic bending of the heads that is independent of the presence of ATP. Together, the tilting and bending motions can explain force generation in isometric muscle, when filament sliding is prevented. The elastic strain in the head is 2.0-2.7 nm under these conditions, contributing 40-50% of the compliance of the muscle sarcomere. We present an atomic model for changes in head conformation that accurately reproduces the changes in the X-ray diffraction pattern seen when rapid length changes are applied to muscle fibres both in active contraction and in the absence of ATP. The model predictions are relatively independent of which parts of the head are assumed to bend or tilt, but depend critically on the measured values of filament sliding and elastic strain.  相似文献   

15.
Previously we reported that, after 17-day bed rest unloading of 8 humans, soleus slow fibers atrophied and exhibited increased velocity of shortening without fast myosin expression. The present ultrastructural study examined fibers from the same muscle biopsies to determine whether decreased myofilament packing density accounted for the observed speeding. Quantitation was by computer-assisted morphometry of electron micrographs. Filament densities were normalized for sarcomere length, because density depends directly on length. Thick filament density was unchanged by bed rest. Thin filaments/microm2 decreased 16-23%. Glycogen filled the I band sites vacated by filaments. The percentage decrease in thin filaments (Y) correlated significantly (P < 0.05) with the percentage increase in velocity (X), (Y = 0.1X + 20%, R2 = 0.62). An interpretation is that fewer filaments increases thick to thin filament spacing and causes earlier cross-bridge detachment and faster cycling. Increased velocity helps maintain power (force x velocity) as atrophy lowers force. Atrophic muscles may be prone to sarcomere reloading damage because force/microm2 was near normal, and force per thin filament increased an estimated 30%.  相似文献   

16.
Regulated assembly of myosin II in Dictyostelium discoideum amoebae partially controls the orderly formation of contractile structures during cytokinesis and cell migration. Kinetic and structural analyses show that Dictyostelium myosin II assembles by a sequential process of slow nucleation and controlled growth that differs in rate and mechanism from other conventional myosins. Nuclei form by an ordered progression from myosin monomers to parallel dimers to 0.43 microns long antiparallel tetramers. Lateral addition of dimers to bipolar tetramers completes the assembly of short (0.45 microns) blunt-ended thick filaments. Myosin heads are not staggered along the length of tapered thick filaments as in skeletal muscle, nor are bipolar minifilaments formed as in Acanthamoeba. The overall assembly reaction incorporating both nucleation and growth could be kinetically characterized by a second-order rate constant (kobs,N+G) of 1.85 x 10(4) M-1 s-1. Individual rate constants obtained for nucleation, kobs,N = 4.5 x 10(3) M-1 s-1, and growth, kobs,G = 2.5 x 10(4) M-1 s-1, showed Dictyostelium myosin II to be the slowest assembling myosin analyzed to date. Nucleation and growth stages were independently regulated by Mg2+, K+, and actin filaments. Increasing concentrations of K+ from 50 to 150 mM specifically inhibited lateral growth of dimers off nuclei. Intracellular concentrations of Mg2+ (1 mM) accelerated nucleation but maintained distinct nucleation and growth phase kinetics. Networks of actin filaments also accelerated the nucleation stage of assembly, mechanistically accounting for spontaneous formation of actomyosin contractile fibers via myosin assembly (Mahajan et al., 1989). The distinct assembly mechanism and regulation utilized by Dictyostelium myosin II demonstrates that myosins from smooth muscle, striated muscle, and two types of amoebae form unique thick filaments by different pathways.  相似文献   

17.
Step changes in length (between -3 and +5 nm per half-sarcomere) were imposed on isolated muscle fibers at the plateau of an isometric tetanus (tension T0) and on the same fibers in rigor after permeabilization of the sarcolemma, to determine stiffness of the half-sarcomere in the two conditions. To identify the contribution of actin filaments to the total half-sarcomere compliance (C), measurements were made at sarcomere lengths between 2.00 and 2.15 microm, where the number of myosin cross-bridges in the region of overlap between the myosin filament and the actin filament remains constant, and only the length of the nonoverlapped region of the actin filament changes with sarcomere length. At 2.1 microm sarcomere length, C was 3.9 nm T0(-1) in active isometric contraction and 2.6 nm T0(-1) in rigor. The actin filament compliance, estimated from the slope of the relation between C and sarcomere length, was 2.3 nm microm(-1) T0(-1). Recent x-ray diffraction experiments suggest that the myosin filament compliance is 1.3 nm microm(-1) T0(-1). With these values for filament compliance, the difference in half-sarcomere compliance between isometric contraction and rigor indicates that the fraction of myosin cross-bridges attached to actin in isometric contraction is not larger than 0.43, assuming that cross-bridge elasticity is the same in isometric contraction and rigor.  相似文献   

18.
Since mica is a substitute for glass in the in vitro actin motility assay, I examined the structure of heavy meromyosin (HMM) crossbridges supporting actin filaments by quick-freeze deep-etch replica electron microscopy. This method was capable of resolving the inter-domain cleft of the monomeric actin molecule. HMM heads that are not bound to actin, when observed by this technique, were straight and elongated in the absence of ATP but strongly kinked upon addition of ATP or ADP.inorganic vanadate to produce the putative long-lived analog of HMM-ADP.inorganic phosphate. The low-magnification image of the ATP-containing acto-HMM preparation showed features characteristic of sliding actin filaments on glass coverslips. At high magnification, all the HMM molecules were found attached to actin by one head with the majority projecting perpendicular to the filament axis, whereas in the absence of ATP, HMM exhibited two-head binding with a preponderance of molecules tilted at 45 degrees. Detailed examination of the shape of HMM heads involved in sliding showed a rounded, and flat appearance of the tip and comparatively thin neck portion as if the heads grasp actin filament, in contrast to rigor crossbridges which have a pear-shaped configuration with more gradual taper. Such configurations of HMM heads were essentially the same as I observed previously on acto-myosin subfragment-1 (S1) by the same technique, except for the presence of an additional neck portion of HMM which makes interpretaion of the images easier. Interestingly, under actively sliding conditions, very few heads were tilted in the rigor configuration. At first glance, the addition of ADP to the rigor-complex gave images rather like those obtained with ATP, but they turned out to be different. The contribution of the structural change of crossbridges to the force development is discussed.  相似文献   

19.
The in vivo state of assembly of myosin in vertebrate smooth muscle is controversial. In vitro studies on purified smooth muscle myosin show that it is monomeric (10S) under relaxing conditions and filamentous under contraction conditions. Electron microscopic and antibody labelling studies of intact smooth muscles, on the other hand, suggest that myosin is filamentous in the relaxed as well as the contracting state and that 10S myosin occurs only in trace amounts. However, birefringence, conventional EM and X-ray diffraction evidence suggests that in certain smooth muscles in vivo (e.g. rat anococcygeus), while myosin filaments exist in the relaxed state, their number increases on contraction. Here, we have used low temperature electron microscopic techniques (rapid freezing followed by freeze-substitution), which preserve labile components in close to their in vivo state, to detect any change in filament number on contraction. The results from rat anococcygeus have been compared with those from guinea pig taenia coli, in which other techniques have revealed no change in filament number. In the anococcygeus, we find evidence for a 23% increase in filament density in transverse sections of contracting muscle compared with relaxed muscle. In the taenia coli we find no change. These results are in qualitative agreement with earlier findings. They provide evidence for polymerization of myosin in contracting rat anococcygeus, and suggest that this process is subtle and occurs only in some smooth muscles.  相似文献   

20.
Pyrophosphate (PPi) is a non-hydrolyzable ATP analogue known to affect the binding between myosin heads and actin. By using a dynamic laser light scattering method, we have shown that 1-2 mM PPi enhances the increase in gamma values induced by Ca2+ in isolated thick myofilaments from Limulus striated muscle. However, similar treatment has no effect on the gamma values of filaments suspended in either relaxing solution or ATP-free solution. gamma is the average linewidth of the photoelectron count autocorrelation function of the light scattered. PPi had no effect on the increase of gamma values by Sr2+ but it substantially increased the gamma values of the thick myofilaments suspended in Ba(2+)-substituted Ca2+ activating solution. The results show that PPi also affects the energy-requiring cyclic cross-bridge motions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号