首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Various carbocyclic analogues of adenosine, including aristeromycin (carbocyclic adenosine), carbocyclic 3-deazaadenosine, neplanocin A, 3-deazaneplanocin A, the 5'-nor derivatives of aristeromycin, carbocylic 3-deazaadenosine, neplanocin A and 3-deazaneplanocin A, and the 2-halo (i.e., 2-fluoro) and 6'-R-alkyl (i.e., 6'-R-methyl) derivatives of neplanocin A have been recognized as potent inhibitors of S-adenosylhomocysteine (AdoHcy) hydrolase. This enzyme plays a key role in methylation reactions depending on S-adenosylmethionine (AdoMet) as methyl donor. AdoHcy hydrolase inhibitors have been shown to exert broad-spectrum antiviral activity against pox-, paramyxo-, rhabdo-, filo-, bunya-, arena-, and reoviruses. They also interfere with the replication of human immunodeficiency virus through inhibition of the Tat transactivation process.  相似文献   

2.
3.
4.
5.
The inhibitory effect of 15 semi-synthetic analogues of glaucine (1) on the lipopolysaccharide (LPS)-induced and the concanavalin A (Con A)-induced proliferation of mouse splenocytes was compared in vitro. Isoboldine (3), bracteoline (4) and dehydroglaucine (9) showed a significantly higher potency to suppress LPS-induced proliferation than 1, while 7-hydroxy-4-methylglaucine (8), 7-formyldehydroglaucine (11), 7-acetyldehydroglaucine (13), 7-benzoyldehydroglaucine (14), oxoglaucine (15) and glaucine-quinol (16) were less inhibitory. Compounds 3, 4, boldine (5), 15 and 16 surpassed significantly the inhibition expressed by 1 on Con A-induced proliferative response. The effect was equal to the inhibition determined for mitomycin C (Mit C) with both mitogens. In contrast to all others analogues, thaliporphine (2) stimulated splenocyte proliferation in both assays. Antibody response against sheep red blood cells (SRBC) was lowered most strongly by cataline (6), 7-methyldehydroglaucine (10) and 16.  相似文献   

6.
Most inhibitors of S-adenosylhomocysteine (AdoHcy) hydrolase function as substrates for the "3'-oxidative activity" of the enzyme and convert the enzyme from its active form (NAD+) to its inactive form (NADH) (Liu, S., Wolfe, M. S., and Borchardt, R. T. (1992) Antivir. Res. 19, 247-265). In this study, we describe the effects of a mechanism-based inhibitor, 6'-bromo-5', 6'-didehydro-6'-deoxy-6'-fluorohomoadenosine (BDDFHA), which functions as a substrate for the "6'-hydrolytic activity" of the enzyme with subsequent formation of a covalent linkage with the enzyme. Incubation of human placental AdoHcy hydrolase with BDDFHA results in a maximum inactivation of 83% with the remaining enzyme activity exhibiting one-third of the kcat value of the native enzyme. This partial inactivation is concomitant with the release of both Br- and F- ions and the formation of adenine (Ade). The enzyme can be covalently labeled with [8-3H]BDDFHA, resulting in a stoichiometry of 2 mol of BDDFHA/mol of the tetrameric enzyme. The 3H-labeled enzyme retains its original NAD+/NADH content. Tryptic digestion and subsequent protein sequencing of the [8-3H]BDDFHA-labeled enzyme revealed that Arg196 is the residue that is associated with the radiolabeled inhibitor. The partition ratio of the Ade formation (nonlethal event) to covalent acylation (lethal event) is approximately 1:1. From these experimental results, a possible mechanism by which BDDFHA inactivates AdoHcy hdyrolase is proposed: enzyme-mediated water addition at the C-6' position of BDDFHA followed by elimination of Br- ion results in the formation of homoAdo 6'-carboxyl fluoride (HACF). HACF then partitions in two ways: (a) attack by a proximal nucleophile (Arg196) to form an amide bond after expulsion of F- ion (lethal event) or (b) depurination to form Ade and hexose-derived 6-carboxyl fluoride (HDCF), which is further hydrolyzed to hexose-derived 6-carboxylic acid (HDCA) and F- ion (nonlethal event).  相似文献   

7.
8.
We comparatively analyzed the replication kinetics of wild-type (wt) and nef mutant human immunodeficiency virus type 1 (HIV-1) in several CD4-positive cell lines, in order to clarify the molecular function of Nef protein. The delayed growth of nef mutant virus was observed at the initial stage of replication in all cell lines examined. This phenomenon was greatly amplified in the absence of vpu gene. In order to determine the infection stage in viral replication cycle which is specifically affected on virus replication rate in the presence of the Nef protein, we first examined the difference between wt and nef mutant viruses in the virus production rate from transfected cells, and found that the both viruses were produced with equal efficiency. This result showed that Nef protein could be dispensable for virion production. Therefore, early infection stages were focused by single-round infection assay, and the nef mutant virus was found to be much less infectious than wt virus. This indicated that the effect of Nef protein was exhibited in the early phase of a virus replication cycle, during viral adsorption to integration. By entry assay using wt and nef mutant virions, it was revealed that the Nef protein was required for efficient viral entry. These data suggest that the Nef protein might play a role in efficient incorporation of the Env protein into the virions, leading to enhanced viral infectivity.  相似文献   

9.
A series of aminodiol inhibitors of human immunodeficiency virus type 1 (HIV-1) protease were identified by using an in vitro peptide cleavage assay. BMS 182,193, BMS 186,318, and BMS 187,071 protected cells against HIV-1, HIV-2, and simian immunodeficiency virus infections, with 50% effective doses ranging from 0.05 to 0.33 microM, while having no inhibitory effect on cells infected with unrelated viruses. These compounds were also effective in inhibiting p24 production in peripheral blood mononuclear cells infected with HIV-1 IIIB and against the zidovudine-resistant HIV-1 strain A018C. Time-of-addition studies indicated that BMS 182,193 could be added as late as 27 h after infection and still retain its antiviral activity. To directly show that the activity of these compounds in culture was due to inhibition of proteolytic cleavage, the levels of HIV-1 gag processing in chronically infected cells were monitored by Western blot (immunoblot) analysis. All compounds blocked the processing of p55 in a dose-dependent manner, with 50% effective doses of 0.4 to 2.4 microM. To examine the reversibility of BMS 186,318, chronically infected CEM-SS cells were treated with drug and virions purified from the culture medium. Incubation of HIV-1 particles in drug-free medium indicated that inhibition of p55 proteolysis was slowly reversible. The potent inhibition of HIV-1 during both acute and chronic infections indicates that these aminodiol compounds are effective anti-HIV-1 compounds.  相似文献   

10.
The pharmacology, pharmacokinetics, efficacy, adverse effects, drug interactions, and dosage and administration of protease inhibitors are reviewed. Protease inhibitors are a novel class of drugs used for the treatment of human immunodeficiency virus (HIV) infection. Saquinavir, ritonavir, indinavir, and nelfinavir have been approved in the United States; several other agents are under development. Protease inhibitors selectively block HIV protease, an enzyme involved in the later stages of HIV replication. Various pharmacokinetic differences exist among these agents, including differences in bioavailability, protein binding, and drug interactions. The drugs undergo extensive hepatic metabolism; dosage adjustments should be considered for patients with hepatic dysfunction. Clinical trials have shown protease inhibitors to be effective in reducing HIV RNA levels and increasing CD4+ lymphocyte counts. When protease inhibitors are used in combination with other antiretroviral agents, an additional beneficial effect on these markers occurs. Adverse effects of saquinavir and nelfinavir include mild gastrointestinal disturbances such as diarrhea. Ritonavir is less well tolerated because of gastrointestinal disturbances and circumoral and peripheral paresthesia. Indinavir has been associated with nephrolithiasis and asymptomatic hyperbilirubinemia. The development of resistance to protease inhibitors may be related to suboptimal dosages, noncompliance, or partial compliance. Protease inhibitors are potent and highly selective agents that block a critical step in HIV replication. They are effective and relatively well tolerated, but they are expensive, have extensive drug interaction profiles, and require careful compliance with the prescribed regimen.  相似文献   

11.
Integration of a cDNA copy of the human immunodeficiency virus (HIV) genome is mediated by an HIV-1-encoded enzyme, integrase (IN), and is required for productive infection of CD4+ lymphocytes. It had been shown that 3,5-dicaffeoylquinic acid and two analogues were potent and selective inhibitors of HIV-1 IN in vitro. To determine whether the inhibition of IN by dicaffeoylquinic acids was limited to the 3,5 substitution, 3,4-, 4,5-, and 1,5-dicaffeoylquinic acids were tested for inhibition of HIV-1 replication in tissue culture and inhibition of HIV-1 IN in vitro. All of the dicaffeoylquinic acids were found to inhibit HIV-1 replication at concentrations ranging from 1 to 6 microM in T cell lines, whereas their toxic concentrations in the same cell lines were > 120 microM. In addition, the compounds inhibited HIV-1 IN in vitro at submicromolar concentrations. Molecular modeling of these ligands with the core catalytic domain of IN indicated an energetically favorable reaction, with the most potent inhibitors filling a groove within the predicted catalytic site of IN. The calculated change in internal free energy of the ligand/IN complex correlated with the ability of the compounds to inhibit HIV-1 IN in vitro. These results indicate that the dicaffeoylquinic acids as a class are potent and selective inhibitors of HIV-1 IN and form important lead compounds for HIV drug discovery.  相似文献   

12.
13.
The recent development and use of protease inhibitors have demonstrated the essential role that combination therapy will play in the treatment of individuals infected with the human immunodeficiency virus type 1 (HIV-1). Past clinical experience suggests that due to the appearance of resistant HIV-1 variants, additional therapeutics will be required in the future. To identify new options for combination therapy, it is of paramount importance to pursue novel targets for drug development. Ribosomal frameshifting is one potential target that has not been fully explored. Data presented here demonstrate that small molecules can stimulate frameshifting, leading to an imbalance in the ratio of Gag to Gag-Pol and inhibiting HIV-1 replication at what appears to be the point of viral particle assembly. Thus, we propose that frameshifting represents a new target for the identification of novel anti-HIV-1 therapeutics.  相似文献   

14.
15.
Alignment of the available human immunodeficiency virus type 1 (HIV-1) viral DNA termini [U5 and U3 long terminal repeats (LTRs)] shows a high degree of conservation and the presence of a stretch of five or six consecutive adenine and thymine (AT) sequences approximately 10 nucleotides away from each LTR end. A series of AT-selective minor-groove binders, including distamycin and bisdistamycins, bisnetropsins, novel lexitropsins, and the classic monomeric DNA binders Hoechst 33258, 4'-diamino-2-phenylindole, pentamidine, berenil, spermine, and spermidine, were tested for their inhibitory activities against HIV-1 integrase (IN). Although netropsin, distamycin, and all other monomeric DNA binders showed weak activities in the range of 50-200 microM, some of the polyamides, bisdistamycins, and lexitropsins were remarkably active at nanomolar concentrations. Bisdistamycins were 200 times less potent when the conserved AAAAT stretch present in the U5 LTR was replaced with GGGGG, consistent with the preferred binding of these drugs to AT sequences. DNase I footprinting of the U5 LTR further demonstrated the selectivity of these bisdistamycins for the conserved AT sequence. The tested compounds were more potent in Mg+2 than in Mn+2 and inhibited IN50-212 deletion mutant in disintegration assays and the formation of IN/DNA complexes. The lexitropsins also were active against HIV-2 IN. Some of the synthetic polyamides exhibited significant antiviral activity. Taken together, these data suggest that selective targeting of the U5 and U3 ends of the HIV-1 LTRs can inhibit IN function. Polyamides might represent new leads for the development of antiviral agents against acquired immune deficiency syndrome.  相似文献   

16.
In order to evaluate the evolution of transfusional hepatitis C in haemophiliacs, we performed a retrospective study of ALT levels and HCV viraemia with a RNA PCR assay in 57 patients. We found that the vast majority of HCV-infected patients remained viraemic (43/57 = 75%) and higher ALT levels correlated with HCV viraemia. Although indicators of the transfusional viral load (age, severity of haemophilia) and HBV co-infection did not correlate with HCV RNA replication, HIV seropositivity was strongly associated with persistence of HCV viraemia (23/25 = 92% in HIV-positive versus 20/32 = 62% in HIV-negative patients), without any correlation with CD4 counts. Genotyping of HCV in the 43 viraemic patients shows more frequent genotype 1 in the HIV-seropositive group (14/23) than in the seronegative group (6/20). Our data emphasize that besides the role of the immunodeficiency status, the genotypes of HCV might be involved in the differences observed in terms of HCV RNA replication between the HIV-seropositive and seronegative haemophiliacs.  相似文献   

17.
The present investigation was undertaken to determine the effect of various ions on the characteristics of S-adenosylhomocysteine (SAH) hydrolase from bovine kidney. The binding sites of [3H]-adenosine to purified SAH hydrolase were not influenced by phosphate, magnesium, potassium, sodium, chloride or calcium ions at physiological cytosolic concentrations. To test whether NAD+ in the SAH hydrolase is essential for adenosine binding, we prepared the apoenzyme by removing NAD+ with ammonium sulfate. The resulting apoenzyme did not exhibit any [3H]-adenosine binding. Since the apoenzyme was enzymatically inactive, it is suggested that adenosine binds to the active site and not to an allosteric site of the intact enzyme. The kinetics of the hydrolysis and the synthesis of SAH catalyzed by the enzyme SAH hydrolase were measured in the presence and absence of phosphate and magnesium. Phosphate increased the Vmax for both synthesis and hydrolysis. However, only the affinity of adenosine for SAH synthesis was significantly enhanced from 10.1+/-1.3 microM to 5.4+/-0.5 microM by phosphate. This effect was already maximal at a phosphate concentration of 1 mM. All other tested ions were without effect on the enzyme activity. Our results show that phosphate at physiological concentrations shifts the thermodynamic equilibrium of SAH hydrolase in the direction of SAH synthesis. These findings imply that SAH-sensitive transmethylation reactions are inhibited during renal hypoxia when intracellular levels of phosphate, adenosine, and SAH are elevated.  相似文献   

18.
We report here that human immunodeficiency virus type 1 (HIV-1)-infected human thymocytes, in the absence of any exogenous stimulus but cocultivated with autologous thymic epithelial cells (TEC), obtained shortly (3 days) after thymus excision produce a high and sustained level of HIV-1 particles. The levels and kinetics of HIV-1 replication were similar for seven distinct viral strains irrespective of their phenotypes and genotypes. Contact of thymocytes with TEC is a critical requirement for optimal viral replication. Rather than an inductive signal resulting from the contact itself, soluble factors produced in the mixed culture are responsible for this effect. Specifically, the synergistic effects of tumor necrosis factor, interleukin-1 (IL-1), IL-6, and granulocyte-macrophage colony-stimulating factor may account by themselves for the high level of HIV-1 replication in thymocytes observed in mixed cultures. In conclusion, the microenvironment generated by TEC-thymocyte interaction might greatly favor optimal HIV-1 replication in the thymus.  相似文献   

19.
20.
Activation of RNase L by 2',5'-linked oligoadenylates (2-5A) is one of the antiviral pathways of interferon action. To determine the involvement of the 2-5A system in the control of human immunodeficiency virus type 1 (HIV-1) replication, a segment of the HIV-1 nef gene was replaced with human RNase L cDNA. HIV-1 provirus containing sense orientation RNase L cDNA caused increased expression of RNase L and 500- to 1,000-fold inhibition of virus replication in Jurkat cells for a period of about 2 weeks. Subsequently, a partial deletion of the RNase L cDNA which coincided with increases in virus production occurred. The anti-HIV activity of RNase L correlated with decreases in HIV-1 RNA and with an acceleration in cell death accompanied by DNA fragmentation. Replication of HIV-1 encoding RNase L was also transiently suppressed in peripheral blood lymphocytes (PBL). In contrast, recombinant HIV containing reverse orientation RNase L cDNA caused decreased levels of RNase L, increases in HIV yields, and reductions in the anti-HIV effect of alpha interferon in PBL and in Jurkat cells. To obtain constitutive and continuous expression of RNase L cDNA, Jurkat cells were cotransfected with HIV-1 proviral DNA and with plasmid containing a cytomegalovirus promoter driving expression of RNase L cDNA. The RNase L plasmid suppressed HIV-1 replication by eightfold, while an antisense RNase L construct enhanced virus production by twofold. These findings demonstrate that RNase L can severely impair HIV replication and suggest involvement of the 2-5A system in the anti-HIV effect of alpha interferon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号