首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CTP-phosphoethanolamine cytidylyltransferase (ET) is the enzyme that catalyzes the formation of CDP-ethanolamine in the phosphatidylethanolamine biosynthetic pathway from ethanolamine. We constructed a Saccharomyces cerevisiae mutant of which the ECT1 gene, putatively encoding ET, was disrupted. This mutant showed a growth defect on ethanolamine-containing medium and a decrease of ET activity. A cDNA clone was isolated from a human glioblastoma cDNA expression library by complementation of the yeast mutant. Introduction of this cDNA into the yeast mutant clearly restored the formation of CDP-ethanolamine and phosphatidylethanolamine in cells. ET activity in transformants was higher than that in wild-type cells. The deduced protein sequence exhibited homology with the yeast, rat, and human CTP-phosphocholine cytidylyltransferases, as well as yeast ET. The cDNA gene product was expressed as a fusion with glutathione S-transferase in Escherichia coli and shown to have ET activity. These results clearly indicate that the cDNA obtained here encodes human ET.  相似文献   

2.
3.
Bleomycin hydrolase (BH) is a highly conserved cysteine proteinase that deamidates and inactivates the anticancer drug bleomycin. Yeast BH self-assembles to form a homohexameric structure, which resembles a 20 S proteasome and may interact with other proteins. Therefore, we searched for potential human BH (hBH) partners using the yeast two-hybrid system with a HeLa cDNA library and identified the full-length human homologue of yeast ubiquitin-conjugating enzyme 9 (UBC9). Cotransformation assays using hBH deletion mutants revealed that the carboxyl terminus of hBH (amino acids 356-455), which contains two of the three essential catalytic amino acids, was not critical for protein binding in the yeast two-hybrid environment. In vitro translated human UBC9 was precipitated by glutathione S-transferase-hBH fusion protein but not by glutathione S-transferase. Efficient in vitro binding occurred in the absence of the first 24 amino acids of UBC9 and the catalytic Cys93 of UBC9. We confirmed that hBH and UBC9 interacted in vivo by affinity copurification of proteins overexpressed in mammalian cells. Using immunocytochemical analysis, hBH was colocalized with UBC9. Coexpression of hBH and UBC9 in mammalian cells did not markedly alter the bleomycin-hydrolyzing activity of hBH or apparent small ubiquitin-related modifier 1 addition. This is the first reported heteromeric interaction with hBH, and it suggests a role for hBH in intracellular protein processing and degradation.  相似文献   

4.
An archaeal geranylgeranyl diphosphate synthase was overexpressed in Escherichia coli cells as fusion proteins. These fusion proteins retained their thermostability and had higher specific activity than did a partially purified native enzyme Previously reported. We purified 24.3 mg of MBP (maltose-binding protein)-fusion protein and 5.4 mg of GST (glutathione S-transferase)-fusion protein from a one-liter culture of E. coli. The MBP-fusion proteins existed in dimer, tetramer, octamer, or dodecamer form, and their product specificities were altered according to the oligomerization. The MBP-fusion protein has protease-sensitive sites in the portion corresponding to geranylgeranyl diphosphate synthase.  相似文献   

5.
Phospholipase C-gamma (PLCgamma) is the isozyme of PLC phosphorylated by multiple tyrosine kinases including epidermal growth factor, platelet-derived growth factor, nerve growth factor receptors, and nonreceptor tyrosine kinases. In this paper, we present evidence for the association of the insulin receptor (IR) with PLCgamma. Precipitation of the IR with glutathione S-transferase fusion proteins derived from PLCgamma and coimmunoprecipitation of the IR and PLCgamma were observed in 3T3-L1 adipocytes. To determine the functional significance of the interaction of PLCgamma and the IR, we used a specific inhibitor of PLC, U73122, or microinjection of SH2 domain glutathione S-transferase fusion proteins derived from PLCgamma to block insulin-stimulated GLUT4 translocation. We demonstrate inhibition of 2-deoxyglucose uptake in isolated primary rat adipocytes and 3T3-L1 adipocytes pretreated with U73122. Antilipolytic effect of insulin in 3T3-L1 adipocytes is unaffected by U73122. U73122 selectively inhibits mitogen-activated protein kinase, leaving the Akt and p70 S6 kinase pathways unperturbed. We conclude that PLCgamma is an active participant in metabolic and perhaps mitogenic signaling by the insulin receptor in 3T3-L1 adipocytes.  相似文献   

6.
The activation of microsomal glutathione S-transferase in oxidative stress was investigated by perfusing isolated rat liver with 1 mM tert-butyl hydroperoxide (t-BuOOH). When the isolated liver was perfused with t-BuOOH for 7 min and 10 min, microsomal, but not cytosolic, glutathione S-transferase activity was increased 1.3-fold and 1.7-fold, respectively, with a concomitant decrease in glutathione content. A dimer protein of microsomal glutathione S-transferase was also detected in the t-BuOOH-perfused liver. The increased microsomal glutathione S-transferase activity after perfusion with t-BuOOH was reversed by dithiothreitol, and the dimer protein of the transferase was also abolished. When the rats were pretreated with the antioxidant alpha-tocopherol or the iron chelator deferoxamine, the increases in microsomal glutathione S-transferase activity and lipid peroxidation caused by t-BuOOH perfusion of the isolated liver was prevented. Furthermore, the activation of microsomal GSH S-transferase by t-BuOOH in vitro was also inhibited by incubation of microsomes with alpha-tocopherol or deferoxamine. Thus it was confirmed that liver microsomal glutathione S-transferase is activated in the oxidative stress caused by t-BuOOH via thiol oxidation of the enzyme.  相似文献   

7.
Geniposide is an iridoid glycoside extracted from the fruits of Gardenia jasminoides, which are used as a food colorant and as a traditional Chinese medicine for treatment of hepatic and inflammatory diseases. The effects of geniposide and G. jasminoides fruit crude extract on liver cytochrome P-450 (P-450)-dependent monooxygenases, glutathione and glutathione S-transferase were investigated using rats treated orally with the iridoid glycoside (0.1 g/kg body weight/day) or the fruit crude extract (2 g/kg/day) for 4 days. The treatments decreased serum urea nitrogen level but increased liver to body weight ratio, total hepatic glutathione content and hepatic cytosolic glutathione S-transferase activity. Treatments with geniposide and G. jasminoides decreased P-450 content, benzo[a]pyrene hydroxylation, 7-ethoxycoumarin O-deethylation, and erythromycin N-demethylation activities in liver microsomes without affecting aniline hydroxylation activity. The natural products had no effect on glutathione content and monooxygenase activities in kidney microsomes. Immunoblotting analyses of liver microsomal proteins using mouse monoclonal antibody 2-13-1 to rat P4503A1/2 revealed that geniposide and G. jasminoides crude extract decreased the intensity of a P4503A-immunorelated protein. Protein blots probed with mouse monoclonal antibody 1-12-3 to rat P4501A1 and rabbit polyclonal antibody against human P4502E1 showed that both treatments had little or no effect on P4501A and 2E proteins. The present findings demonstrate that geniposide from G. jasminoides has the ability to inhibit a P4503A monooxygenase and increase glutathione content in rat liver.  相似文献   

8.
Rat liver phosphoribosylpyrophosphate (PRPP) synthetase exists as complex aggregates composed of 34-kDa catalytic subunits (PRS I and PRS II) and homologous 39- and 41-kDa proteins termed PRPP synthetase-associated proteins (PAPs). While a negative regulatory role was indicated for PAPs, the physiological function of PAPs is less well understood. We attempted to prepare recombinant 39-kDa PAP (PAP39) and to reconstitute the enzyme complex. Free PAP39 was poorly expressed in Escherichia coli, while expression of protein fused with glutathione S-transferase was successful. The purified fusion protein had no PRPP synthetase activity, and bound to dissociated PRS I and PRS II, with a similar affinity. A free form of PAP39 prepared from the fusion protein formed insoluble aggregates. The enzyme complex was then partially reconstituted in situ by coexpression of PAP39 with PRS I or PRS II in E. coli cells. This coexpression led to formation of soluble complexes of various compositions, depending on the conditions. When the relative amount of PAP39 was higher, specific catalytic activities, in terms of the amount of the catalytic subunit, were lowered. PAP39 complexed with PRS I was more readily degraded by proteolysis than seen with PRS II, in vivo and in vitro. These results provide additional, strong evidence for that PAP39 has no catalytic activity in the enzyme complex, but does exert inhibitory effects in an amount-dependent manner, and that composition of the enzyme complex varies, depending on the relative abundance of components present at the site of aggregate formation.  相似文献   

9.
Two fusion proteins in which the regulatory domains of human protein kinase Calpha (Ralpha; amino acids 1-270) or mouse protein kinase Cepsilon (Repsilon; amino acids 1-385) were linked in frame with glutathione S-transferase (GST) were examined for their abilities to inhibit the catalytic activities of protein kinase Calpha (PKCalpha) and other protein kinases in vitro. Both GST-Ralpha and GST-Repsilon but not GST itself potently inhibited the activities of lipid-activated rat brain PKCalpha. In contrast, the fusion proteins had little or no inhibitory effect on the activities of the Ser/Thr protein kinases cAMP-dependent protein kinase, cGMP-dependent protein kinase, casein kinase II, myosin light chain kinase, and mitogen activated protein kinase or on the src Tyr kinase. GST-Ralpha and GST-Repsilon, on a molar basis, were 100-200-fold more potent inhibitors of PKCalpha activity than was the pseudosubstrate peptide PKC19-36. In addition, a GST-Ralpha fusion protein in which the first 32 amino acids of Ralpha were deleted (including the pseudosubstrate sequence from amino acids 19-31) was an effective competitive inhibitor of PKCalpha activity. The three GST-R fusion proteins also inhibited protamine-activated PKCalpha and proteolytically activated PKCalpha (PKM), two lipid-independent forms of PKCalpha; however, the IC50 values for inhibition were 1 order of magnitude greater than the IC50 values obtained in the presence of lipid. These results suggest that part of the inhibitory effect of the GST-R fusion proteins on lipid-activated PKCalpha may have resulted from sequestration of lipid activators. Nonetheless, as evidenced by their abilities to inhibit the lipid-independent forms of the enzyme, the GST-R fusion proteins also inhibited PKCalpha catalytic activity through direct interactions. These data indicate that the R domains of PKCalpha and PKCepsilon are specific inhibitors of protein kinase Calpha activity and suggest that regions of the R domain outside the pseudosubstrate sequence contribute to autoinhibition of the enzyme.  相似文献   

10.
LEF-3 is one of six proteins from Autographa californica multinucleocapsid polyhedrosis virus required for transient DNA replication and has the properties of a single-stranded DNA binding protein. In this report we demonstrate that LEF-3 interacts with itself in both yeast two-hybrid assays and glutathione S-transferase fusion affinity assays. LEF-3 deletion clones which were unable to interact with full-length LEF-3 also failed to support transient DNA replication, suggesting that this interaction is required for the proper function of LEF-3. LEF-3 was purified to homogeneity and characterized by analytical ultracentrifugation and native polyacrylamide gel electrophoresis. These studies revealed that LEF-3 was present as a 132-kDa complex, indicating that its native conformation is that of a homotrimer. This result was confirmed by cross-linking with glutaraldehyde followed by matrix-assisted laser desorption/ionization mass spectrometry.  相似文献   

11.
Individual members of the conserved family of ubiquitin conjugating enzymes (E2s) mediate the ubiquitination and turnover of specific substrates of the ubiquitin-dependent degradation pathway. E2 proteins have a highly conserved core domain of approximately 150 amino acids which contains the active-site Cys. Certain E2s have unique terminal extensions, which are thought to contribute to selective E2 function by interacting either with substrates or with trans-acting factors such as ubiquitin-protein ligases (E3s). We used the mammalian ubiquitin conjugating enzyme E2-25K in a biochemical test of this hypothesis. The properties of two truncated derivatives show that the 47-residue tail of E2-25K is necessary for three of the enzyme's characteristic properties: high activity in the synthesis of unanchored K48-linked polyubiquitin chains; resistance of the active-site Cys residue to alkylation; and an unusual discrimination against noncognate (nonmammalian) ubiquitin activating (E1) enzymes. However, the tail is not sufficient to generate these properties, as shown by the characteristics of a chimeric enzyme in which the tail of E2-25K was fused to the core domain of yeast UBC4. These and other results indicate that the specific biochemical function of the tail is strongly dependent upon unique features of the E2-25K core domain. Thus, divergent regions within the conserved core domains of E2 proteins may be highly significant for function. Expression of truncated E2-25K as a glutathione S-transferase (GST) fusion protein resulted in the apparent recovery of E2-25K-specific properties, including activity in chain synthesis. However, the catalytic mechanism utilized by the truncated fusion protein proved to be distinct from the mechanism utilized by the wild-type enzyme. The unexpected properties of the fusion protein were due to GST-induced dimerization. These results indicate the potential for self-association to modulate the polyubiquitin chain synthesis activities of E2 proteins, and indicate that caution should be applied in interpreting the activities of GST fusion proteins.  相似文献   

12.
The biochemical activities that underlie the genetically defined activator and repressor functions of the VIVIPAROUS1 (VP1) protein have resisted in vitro analysis. Here, we show that a glutathione S-transferase (GST) fusion protein, including only the highly conserved B3 domain of VP1, has a highly cooperative, sequence-specific DNA binding activity. GST fusion proteins that include larger regions of the VP1 protein have very low activity, indicating that removal of the flanking protein sequences is necessary to elicit DNA binding in vitro. DNA competition and DNase I footprinting analyses show that B3 binds specifically to the Sph element involved in VP1 activation of the C1 gene, whereas binding to the G-box-type VP1-responsive element is of low affinity and is nonspecific. Footprint analysis of the C1 promoter revealed that sequences flanking the core TCCATGCAT motif of Sph also contribute to the recognition of the Sph element in its native context. The salient features of the in vitro GST-B3 DNA interaction are in good agreement with the protein and DNA sequence requirements defined by the functional analyses of VP1 and VP1-responsive elements in maize cells.  相似文献   

13.
Flaviviruses generate their structural and nonstructural proteins by proteolytic processing of a single large polyprotein precursor. These proteolytic events are brought about both by host cell signalase and a virally encoded protease. The virally encoded proteolytic activity has been shown to reside within the nonstructural protein 3 (NS3) and requires the product of the nonstructural 2b (NS2b) gene. In order to obtain sufficient quantities of pure NS2b and NS3 proteins for kinetic analysis, we have expressed both these proteins in recombinant systems as fusions to glutathione S-transferase (GST). The fusion constructs were driven by the strong bacteriophage T7 promoter. Transfection of these constructs into the African green monkey kidney cell line CV-1 previously infected with a recombinant vaccinia virus expressing the T7 RNA polymerase resulted in synthesis of the fusion proteins. Both the fusion proteins could be purified to homogeneity in a single step using a glutathione agarose affinity matrix.  相似文献   

14.
The erythrocyte binding antigen EBA-175 is a 175-kDa Plasmodium falciparum protein which mediates merozoite invasion of erythrocytes in a sialic acid-dependent manner. The purpose of this study was to produce recombinant EBA-175 polypeptide domains which have previously been identified as being involved in the interaction of EBA-175 with erythrocytes and to determine whether these polypeptides are recognized by malaria-specific antibodies. The eba-175 gene was cloned by PCR from genomic DNA isolated from the 3D7 strain of P. falciparum. The predicted protein sequence was highly conserved with that predicted from the published eba-175 gene sequences from the Camp and FCR-3 strains of P. falciparum and contained the F segment divergent region. Purified recombinant EBA-175 polypeptide fragments, expressed as glutathione S-transferase fusion proteins in insect cells by using the baculovirus system, were recognized by antibodies present in serum from a drug-cured, malaria-immune Aotus nancymai monkey. The fusion proteins were also recognized by antibodies present in sera from individuals residing in areas where malaria is endemic. In both cases the antibodies specifically recognized the EBA-175 polypeptide portion of the fusion proteins. Antibodies raised in rabbits immunized with the recombinant fusion proteins recognized parasite proteins present in schizont-infected erythrocytes. Our results suggest that these regions of the EBA-175 protein are targets for the immune response against malaria and support their further study as possible vaccine components.  相似文献   

15.
Comamonas acidovorans YM1609 secreted a polyhydroxybutyrate (PHB) depolymerase into the culture supernatant when it was cultivated on poly(3-hydroxybutyrate) [P(3HB)] or poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] as the sole carbon source. The PHB depolymerase was purified from culture supernatant of C. acidovorans by two chromatographic methods, and its molecular mass was determined as 45,000 Da by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme was stable at temperatures below 37 degrees C and at pH values of 6 to 10, and its activity was inhibited by diisopropyl fluorophosphonate. The liquid chromatography analysis of water-soluble products revealed that the primary product of enzymatic hydrolysis of P(3HB) was a dimer of 3-hydroxybutyric acid. Kinetics of enzymatic hydrolysis of P(3HB) film were studied. In addition, a gene encoding the PHB depolymerase was cloned from the C. acidovorans genomic library. The nucleotide sequence of this gene was found to encode a protein of 494 amino acids (M(r), 51,018 Da). Furthermore, by analysis of the N-terminal amino acid sequence of the purified enzyme, the molecular mass of the mature enzyme was calculated to be 48,628 Da. Analysis of the deduced amino acid sequence suggested a domain structure of the protein containing a catalytic domain, fibronectin type III module as linker, and a putative substrate-binding domain. Electron microscopic visualization of the mixture of P(3HB) single crystals and a fusion protein of putative substrate-binding domain with glutathione S-transferase demonstrated that the fusion protein adsorbed strongly and homogeneously to the surfaces of P(3HB) single crystals.  相似文献   

16.
Increased activity of the Na(+)-H+ exchanger (NHE-1 isoform) has been observed in cells and tissues from hypertensive humans and animals, including the spontaneously hypertensive rat (SHR). No mutation in NHE-1 DNA sequence or alteration in NHE-1 mRNA and protein expression has been demonstrated in hypertension, indicating that alterations in proteins that regulate NHE-1 activity are responsible for increased activity. The recent finding that NHE-1 phosphorylation in SHR vascular smooth muscle cells (VSMCs) was greater than in Wistar-Kyoto rat (WKY) VSMCs suggested that NHE-1 kinases may represent an abnormal regulatory pathway present in hypertension. To define NHE-1 kinases altered in the hypertensive phenotype. We measured NHE-1 kinase activity by an in-gel-kinase assay using a recombinant glutathione S-transferase NHE-1 fusion protein as a substrate. At least 7 NHE-1 kinases (42 to 90 kD) were present in VSMCs. We studied a 90-kD kinase because it was the major NHE-1 kinase and exhibited differences between SHR and WKY. Comparison of 90-kD kinase activity revealed that SHR VSMCs had increased activity in growth-arrested cells and in cells stimulated by angiotensin II (100 nmol/L for 5 minutes). Activation of the 90-kD kinase by angiotensin II was Ca2+ dependent, PKC independent, and partially dependent on the mitogen-activated protein kinase pathway. These findings indicate that increased activity of a 90-kD NHE-1 kinase is a characteristic of SHR VSMCs in culture and suggest that alterations in the 90-kD NHE-1 kinase and/or proteins that regulate its activity may be a pathogenic component in hypertension in the SHR.  相似文献   

17.
In the present experiments the cDNA coding for a truncated form of the beta1,6N-acetylglucosaminyltransferase responsible for the conversion of linear to branched polylactosamines in human PA1 cells was expressed in Sf9 insect cells. The catalytic ectodomain of the enzyme was fused to glutathione S-transferase, allowing effective one-step purification of the glycosylated 67-74-kDa fusion protein. Typically a yield of 750 microg of the purified protein/liter of suspension culture was obtained. The purified recombinant protein catalyzed the transfer of GlcNAc from UDP-GlcNAc to the linear tetrasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc, converting the acceptor to the branched pentasaccharide Galbeta1-4GlcNAcbeta1-3(GlcNAcbeta1-6)Galbeta1-4 GlcNAc as shown by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, degradative experiments, and 1H NMR spectroscopy of the product. By contrast, the recombinant enzyme did not catalyze any reaction when incubated with UDP-GlcNAc and the trisaccharide GlcNAcbeta1-3Galbeta1-4GlcNAc. Accordingly, we call the recombinant beta1,6-GlcNAc transferase cIGnT6 to emphasize its action at central rather than peridistal galactose residues of linear polylactosamines in the biosynthesis of blood group I antigens. Taken together this in vitro expression of I-branching enzyme, in combination with the previously cloned enzymes, beta1,4galactosyltransferase and beta1, 3N-acetylglucosaminyltransferase, should allow the general synthesis of polylactosamines based totally on the use of recombinant enzymes.  相似文献   

18.
1. The partial purification of two lithocholic acid-binding proteins from liver 100 000g supernatants is described. 2. Gel-filtration, (NH4)2SO4 fractionation, Ca3(PO4)2 fractionation and ion-exchange chromatography were used. 3. Both proteins exhibited glutathione S-transferase activity; one may be the non-specific anion-binding protein ligandin. 4. Glutathione S-transferase activity of one of the binding proteins was inhibited by lithocholic acid.  相似文献   

19.
ETR1 represents a prototypical ethylene receptor. Homologues of ETR1 have been identified in Arabidopsis as well as in other plant species, indicating that ethylene perception involves a family of receptors and that the mechanism of ethylene perception is conserved in plants. The amino-terminal half of ETR1 contains a hydrophobic domain responsible for ethylene binding and membrane localization. The carboxyl-terminal half of the polypeptide contains domains with homology to histidine kinases and response regulators, signaling motifs originally identified in bacteria. The putative histidine kinase domain of ETR1 was expressed in yeast as a fusion protein with glutathione S-transferase and affinity purified. Autophosphorylation of the purified fusion protein was observed on incubation with radiolabeled ATP. The incorporated phosphate was resistant to treatment with 3 M NaOH, but was sensitive to 1 M HCl, consistent with phosphorylation of histidine. Autophosphorylation was abolished by mutations that eliminated either the presumptive site of phosphorylation (His-353) or putative catalytic residues within the kinase domain. Truncations were used to delineate the region required for histidine kinase activity. An examination of cation requirements indicated that ETR1 requires Mn2+ for autophosphorylation. These results demonstrate that higher plants contain proteins with histidine kinase activity. Furthermore, these results indicate that aspects of ethylene signaling may be regulated by changes in histidine kinase activity of the receptor.  相似文献   

20.
The stable inheritance of the 2 micrometer plasmid in a growing population of Saccharomyces cerevisiae is dependent on two plasmid-encoded proteins (Rep1p and Rep2p), together with the cis-acting locus REP3 (STB). In this study we demonstrate that short carboxy-terminal deletions of Rep1p and Rep2p severely diminish their normal capacity to localize to the yeast nucleus. The nuclear targeting, as well as their functional role in plasmid partitioning, can be restored by the addition of a nuclear localization sequence to the amino or the carboxy terminus of the shortened Rep proteins. Analyses of deletion derivatives of the Rep proteins by using the in vivo dihybrid genetic test in yeast, as well as by glutathione S-transferase fusion trapping assays in vitro demonstrate that the amino-terminal portion of Rep1p (ca. 150 amino acids long) is responsible for its interactions with Rep2p. In a monohybrid in vivo assay, we have identified Rep1p, Rep2p, and a host-encoded protein, Shf1p, as being capable of interacting with the STB locus. The Shf1 protein expressed in Escherichia coli can bind with high specificity to the STB sequence in vitro. In a yeast strain deleted for the SHF1 locus, a 2 micrometer circle-derived plasmid shows relatively poor stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号