首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective: In this study, PEGylated rosin derivatives (PRDs) namely D1 and D2 were synthesized and evaluated for their application to produce sustained-release antibacterial films containing sparfloxacin for periodontitis.

Significance: PRDs are biodegradable and biocompatible, and therefore sustained-release dental implant of PRD-sparfloxacin can provide an effectual treatment for periodontitis.

Methods: Films were produced by solvent casting technique and characterized for morphology, swelling-index, in vitro degradation and drug release kinetics. The impact of type of PRD, concentration of PRDs, and addition of plasticizer (dibutyl phthalate) on various film properties was evaluated. The films were also subjected to stability study at 30?°C and 40?°C for 90?days.

Results: Both D1 and D2 produced smooth and non-porous films with sparfloxacin. The D1 films, due to lower amount of polyethylene glycol 400 in D1, exhibited lower swelling-index, slower degradation, and slower drug release compared to D2 films. An increase in PRDs concentration decreased swelling-index, prolonged degradation time, and decreased drug release rate of films; addition of plasticizer showed the similar effect. At pH 7.6, D1 and D2 films showed complete degradation at the end of 58 and 51?days, respectively. At the end of 21?days, D1 and D2 films released 41.85% and 61.53% sparfloxacin, respectively. The drug release from D1 films followed Higuchi square-root kinetics, while D2 films released drug by the zero order kinetics. The stability conditions did not significantly alter PRDs-film properties.

Conclusion: Results revealed that PRDs can be used successfully to produce sustained-release antibacterial films containing sparfloxacin for the treatment of periodontitis.  相似文献   

2.
The present study deals with the preparation of microspheres of diclofenac sodium using cross-linked poly(vinyl alcohol) (PVA). A central composite design consisting of a two-level full factorial design superimposed on a star design was employed for developing the microspheres. The PVA to the drug ratio X1 and amount of glutaral-dehyde cross-linking agent X2 were chosen as the independent variables. The time required for 50% drug dissolution t50 in phosphate buffer (pH 7.2) was selected as the dependent variable. An optimum polynomial equation was generated for the prediction of the response variable t50. Based on the results of multiple linear regression analysis and F statistics, it may be concluded that sustained action can be obtained when X1 and X2 are kept at high levels. The X1X2 interaction was found to be statistically significant. A response surface plot is presented to show the effects of X1 and X2 on t50. The drug release pattern fit the Higuchi model well. A model was validated for accurate prediction of the drug dissolution profile with constraints on the percentage drug release in the first, fifth, and seventh hours. The data of a selected batch were subjected to an optimization study, and an optimal formulation was fabricated. Good agreement was observed between the predicted and the observed dissolution profiles of the optimal formulation.  相似文献   

3.
Sustained release of diclofenac sodium (DcNa) from suppositories composed of triglycerides and polymer was investigated by dissolution testing through an artificial membrane. DcNa was slowly released from a suppository containing carboxyvinyl polymer (CVP), and the extent of the release decreased with the amount of CVP added. Little effect was noted with the addition of other water-soluble polymers, such as hydroxyethylcellulose (HEC), xanthan gum, and polyvinylalcohol (PVA). When sodium benzoate was used instead of DcNa, a similar result was obtained with the addition of CVP. The result of release rate analysis together with the viscosity and pH in these cases showed that the reduction of solubility and diffusion due to sodium exchange between DcNa and CVP played an important role in the sustained release from the suppository. Also, in comparison with the results when CVP was not used, the plasma concentration profile of diclofenac after the administration of CVP suppository displayed a twofold longer half-life time.  相似文献   

4.
Microspheres of polyvinylalcohol (PVA) containing diclofenac sodium were prepared by an emulsion-chemical cross-linking method. A statistical design was used to study the variables that affect the preparation of microspheres and to study the release profile of diclofenac from the microspheres. To account for the drug content, a mass balance study of the process was performed. A high concentration of polyvinylalcohol, a high stirring speed, and a low level of glutaraldehyde were found to be important to obtain spherical and discrete microspheres. The concentration of polyvinylalcohol and the amount of heavy liquid paraffin were found to be critical factors in influencing the t50 value. Almost 98% of the total diclofenac sodium added was accounted for in mass balance studies.  相似文献   

5.
Objective: The aim of this study was to prepare pH-sensitive sodium alginate/calcined hydrotalcite (SA/CHT) hybrid bead with improved the burst release effect of the drug.

Materials and methods: A series of pH-sensitive SA/CHT hybrid beads were prepared by using Ca2+ cross-linking in the presence of diclofenac sodium (DS) and SA. The structure and drug loading of the beads were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. The swelling and the drug release of the fabricated beads were investigated by the pH of test medium and CHT content.

Result: The formed positively charged hydrotalcite layers were adsorbed on the negatively charged SA polymer chains through electrostatic interaction and act as inorganic cross-linkers in the three-dimensional network. Compared to pure SA beads, the incorporation of CHT enhanced the drug encapsulation efficiency, improved the swelling behaviors and slowed the drug release from the hybrid beads.

Discussion and conclusions: The electrostatic interaction between hydrotalcite and SA has restricted the movability of the SA polymer chains, and then slowed down swelling and dissolution rates in aqueous solutions. The results provided a simple method to moderate drug release and matrix degradation of the SA beads.  相似文献   

6.
7.
The low bioavailability and short biological half-life of berberine chloride (BBR) negatively affect the protective role of this compound against osteoarthritis (OA). The present study was performed to evaluate the effectiveness of sustained BBR release system. Novel BBR-loaded chitosan microspheres (BBR-loaded CMs) were successfully synthesized using an ionic cross-linking method for sustained release. The basic characteristics of the prepared microspheres were subsequently evaluated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) techniques, encapsulation efficiency (EE), and in vitro release experiments. BBR-loaded CMs displayed spherical forms to encapsulate a considerable quantity of BBR (100.8?±?2.7?mg/g); these microspheres also exhibited an ideal releasing profile. The FT-IR spectra and XRD results revealed that BBR-loaded CMs were successfully synthesized via electrostatic interaction. In vitro experiments further showed that BBR-loaded CMs significantly inhibited sodium nitroprusside (SNP)-stimulated chondrocyte apoptosis as well as cytoskeletal remodeling, and led to increasing mitochondrial membrane potential and maintaining the nuclear morphology. BBR-loaded CMs exerted markedly higher anti-apoptotic activity in the treatment of OA, and markedly inhibited the protein expression levels of caspase-3, a disintegrin, and metalloproteinase with thrombospondin motifs (ADAMTS)-5 and matrix metalloproteinase (MMP)-13 induced by SNP in rat articular chondrocytes, compared with free BBR at equivalent concentration. Therefore, novel BBR-loaded CMs may offer potential for application in the treatment of OA.  相似文献   

8.
The present work demonstrates the possibilities of hydrothermal transformation of Zn-Al layered double hydroxide (LDH) nanostructure by varying the synthetic conditions. The manipulation in washing step before hydrothermal treatment allows control over crystal morphologies, size and stability of their aqueous solutions. We examined the crystal growth process in the presence and the absence of extra ions during hydrothermal treatment and its dependence on the drug (diclofenac sodium (Dic-Na)) loading and release processes. Hexagonal plate-like crystals show sustained release with ~90% of the drug from the matrix in a week, suggesting the applicability of LDH nanohybrids in sustained drug delivery systems. The fits to the release kinetics data indicated the drug release as a diffusion-controlled release process. LDH with rod-like morphology shows excellent colloidal stability in aqueous suspension, as studied by photon correlation spectroscopy.  相似文献   

9.
Cardiac dysfunction following acute myocardial infarction is a major cause of death in the world and there is a compelling need for new therapeutic strategies. In this report we demonstrate that a direct cardiac injection of drug-loaded microparticles, formulated from the polymer poly(cyclohexane-1,4-diylacetone dimethylene ketal) (PCADK), improves cardiac function following myocardial infarction. Drug-delivery vehicles have great potential to improve the treatment of cardiac dysfunction by sustaining high concentrations of therapeutics within the damaged myocardium. PCADK is unique among currently used polymers in drug delivery in that its hydrolysis generates neutral degradation products. We show here that PCADK causes minimal tissue inflammatory response, thus enabling PCADK for the treatment of inflammatory diseases, such as cardiac dysfunction. PCADK holds great promise for treating myocardial infarction and other inflammatory diseases given its neutral, biocompatible degradation products and its ability to deliver a wide range of therapeutics.  相似文献   

10.
The development of controlled release formulations has brought about the need for appropriate quality control methods such as in vitro dissolution testing. Such tests are principally designed to obtain correlation with the in vivo performance of the formulation (1,2,3). If an in vitro test can be defined offering a good correlation the test may serve for routine quality control or may be useful in screening new drug formulations.  相似文献   

11.
The purpose of this study was to develop sustained release formulation of anastrozole-loaded chitosan microspheres for treatment of breast cancer. Chitosan microspheres cross-linked with two different cross-linking agents viz, tripolyphosphate (TPP) and glutaraldehyde (GA) were prepared using single emulsion (w/o) method. A reverse phase HPLC method was developed and used for quantification of drug in microspheres and rat plasma. Influence of cross-linking agents on the properties of chitosan microspheres was extensively investigated. Formulations were characterized for encapsulation efficiency (EE), compatibility of drug with excipients, particle size, surface morphology, swelling capacity, erosion and drug release profile in phosphate buffer pH 7.4. EE varied from 30.4 ± 1.2 to 69.2 ± 3.2% and mean particle size distribution ranged from 72.5 ± 0.5 to 157.9 ± 1.5 μm. SEM analysis revealed smooth and spherical nature of microspheres. TPP microspheres exhibited higher swelling capacity, percentage erosion and drug release compared to GA microspheres. Release of anastrozole (ANS) was rapid up to 4 h followed by slow release status. FTIR analysis revealed no chemical interaction between drug and polymer. DSC analysis indicated ANS trapped in the microspheres existed in amorphous form in polymer matrix. The highest correlation coefficients (R 2) were obtained for Higuchi model, suggesting a diffusion controlled mechanism. There was significant difference in the pharmacokinetic parameters (AUC0−∞, Kel and t1/2) when ANS was formulated in the form of microspheres compared to pure drug. This may be attributed to slow release rate of ANS from chitosan microspheres and was detectable in rat plasma up to 48 h which correlates well with the in vitro release data.  相似文献   

12.
The phenomena of polymer interactions and formation of polyelectrolyte complexes (PECs) of oppositely charged polymers have been the focus of interest in fundamental and applied research. Such PECs may possess unique properties that are different from those of individual polymers. In the present study, attempts were made to prepare PECs of negative colloid gum karaya (GK) and positively charged polysaccharide chitosan (CH). The association and factors affecting the interactions between GK and CH were studied by pH and conductivity studies. The dried complexes were characterized by X-ray diffraction, Fourier transformed Infrared (FTIR) Spectroscopy, Scanning Electron Microscopy. The PECs were utilized for encapsulation of diclofenac sodium. Selected polyelectrolyte microparticles were compressed into tablets and were compared with commercial sustained release product Voveran SR?. Positive results of the study indicated the applicability of PECs in the design of oral controlled release drug delivery systems.  相似文献   

13.
Rosin was partially esterified with polyethylene glycol 400 and reacted with maleic-anhydride to form an ester-adduct derivative. Derivative and native rosin were characterized for physicochemical properties. Aqueous coating system of derivative was developed by ammonia neutralization method. Organic-based films were produced using acetone. Aqueous and organic-based films were comparatively evaluated. Derivative exhibited an excellent coat-forming ability on spherical-units. Aqueous-based film exhibited very high water vapor transmission rate, wettability, water uptake, and leaching at pH 6.8. A 20% w/w aqueous-based coat could sustain diclofenac sodium release for 8 h, whereas, 20% w/w organic-based coat released 20.11% of drug in 8 h. In conclusion, aqueous coating system of synthesized rosin derivative can be developed; however, aqueous-coats are less efficient to retard the drug release rate. Instead, the organic-based coatings can efficiently be used for sustained drug delivery.  相似文献   

14.
The PEGylated derivatives of rosin-PD-1 and PD-2 synthesized and characterized earlier () were investigated as potential materials for sustained release microsphere prepared by emulsion solvent evaporation method using diclofenac sodium (DCS) as model drug. All the microspheres exhibited smooth surfaces intercepted by pores; their sizes (d90) ranged between 11–24 μm. The entrapment efficiency (< 80%) of the microspheres increased proportionally with derivative concentration. Presence of solvent like isopropyl alcohol or dichloromethane rendered the microspheres with large sizes but with reduced drug entrapment. Microspheres with small size were obtained at an optimum viscosity of liquid paraffin; any change lead to increase in the particle size. Magnesium stearate was found to be most suitable detackifier in the present system. The drug release was directly related to the particle size—small sized microspheres released drug at a faster rate. The dissolution data complied with Higuchi equation while the mechanism of drug release was Fickian diffusion (n ~ 0.5). Controlled inhibition of edema, as tested by hind paw edema method, was observed for 10 h when the microspheres were administered intraperitoneally. The present study found the derivatives as promising materials for preparing microspheres for sustained delivery of DCS.  相似文献   

15.
Sustained-release polymer beads containing diclofenac sodium (DNa) dispersed in Compritol 888 and encapsulated in calcium alginate shell were prepared utilizing 23 factorial design. The effect of sodium alginate concentration, drug:Compritol 888 weight ratio and CaCl2 concentration on drug content (%), time for 50% and 80% of the drug to be released, and mean dissolution time (MDT) were evaluated with analysis of variance (ANOVA). An increase in the level of all these factors caused retardation in the release, and t50%, t80%, and MDT were increased. The drug release was dependent on the pH of the release media. A formula that gives a release comparable to commercial products was prepared.  相似文献   

16.
Background: Dissolution characteristics of four extended release (ER) generic formulations of diclofenac sodium were examined. Aim: The aim of this study was to compare the drug dissolution behavior of diclofenac ER generics to clarify whether the products are characterized by comparable dissolution characteristics under the applied test conditions. Methods: The investigations were performed in the USP apparatus 2 and in the new biorelevant dissolution stress test device. Results: The experiments yielded striking differences between the generic formulations. Applying USP apparatus 2 it was noticed that the dissolution profiles of the products were distinctly affected by the stirring rate. Using the biorelevant dissolution stress test device susceptibility of the products to biorelevant stresses was observed. Change of pH within the experiments reduced the dissolution rates of all formulations and distinctly influenced their dissolution characteristics. Conclusion: The study demonstrates clearly the divergences in the dissolution behavior among the generic ER formulations of diclofenac sodium. The observed susceptibility of the tested dosage forms toward biorelevant stress bears in our interpretation the risk to cause unwanted fluctuations in drug plasma concentration profiles.  相似文献   

17.
Sustained-release ethyl cellulose (EC) micro-particles were prepared by electrospraying. Ketoprofen (KET) was taken as a model drug and various concentrations of EC functioned as a rate-controlling polymer. The morphology of the micro-particles was assessed using SEM. Images showed that as EC content increased, the granules shared similar surface characteristics containing pure EC. Micro-particle structures were analyzed by DSC, XRD, and FTIR. It was noted that the crystalline drug was converted into an amorphous form in all the granulations and that there was chemical interaction between KET and EC observed from FTIR. Dissolution studies revealed that as the amount of EC increased, the drug release rate decreased. This investigation suggests that electrospraying can be exploited as a useful tool for developing novel particulate drug delivery systems.  相似文献   

18.
以松香与甲基丙烯酸-2-羟乙酯酯化物(HR)、苯乙烯(St)和甲基丙烯酸(MAA)为单体,二乙烯基苯(DVB)为交联剂,偶氮二异丁腈为引发剂,采用悬浮聚合法制备含松香的羧基化聚合物微球。研究St和MAA质量比例、反应温度、分散剂用量对微球性能的影响,利用红外光谱、光学显微镜、扫描电镜和热重分析等对微球结构进行表征,利用电导滴定法对微球表面羧基含量进行测定。结果表明,成功制备了含松香的羧基化聚合物微球,微球球形较好,表面羧基含量达0.146mmol/g,加入MAA后微球的热稳定性变化不大。合成微球较优工艺条件:m(HR)∶m(St+MAA)∶m(DVB)=1∶1.5∶0.4,m(St)∶m(MAA)=3∶3,明胶用量4%(质量分数),反应温度为80℃。  相似文献   

19.
Application of nanofiber-based nanomats in medicine is attractive and thanks to the 3D nanostructure and the high surface to volume ratio they are excellent for local controlled drug delivery. The use of bioactive bioerodible polymers for developing drug delivery nanomats may allow for drug release and targeting control. Objective of the current study was to evaluate the suitability of bioerodible polymeric material based on n-butyl hemiester of [poly(maleic anhydride-alt-2-methoxyethyl vinyl ether)] (PAM14) for the preparation of nanomats for controlled administration of anti-inflammatory, diclofenac sodium (DS) drug. Samples were prepared using different polymer concentrations (5-10%) in either ethanol or acetic acid as solvent. Morphology was investigated by using scanning electron microscopy (SEM). Thermal analysis such as differential scanning calorimetry (DSC) was performed to detect effect on polymer arrangement. DS localization in electrospun nanomats was evaluated by using electron back scattering microanalysis, based on the detection of chlorine, and drug release kinetics was assessed using UV-Vis. Average fiber diameter resulted in the range of 100 nm to 1.0 microm and a homogeneous distribution of the loaded drug into the fibers was observed. The DS release was immediate and despite the preliminary nature of the performed electrospinning experiments, the achieved results appear promising for the future development of a novel system for the controlled and targeted administration of drug and active agent.  相似文献   

20.
The purpose of this work was to develop a modified release system for the herbicide ametryn by encapsulating the active substance in biodegradable polymer microparticles produced using the polymers poly(hydroxybutyrate) (PHB) or poly(hydroxybutyrate-valerate) (PHBV), in order to both improve the herbicidal action and reduce environmental toxicity. PHB or PHBV microparticles containing ametryn were prepared and the efficiencies of herbicide association and loading were evaluated, presenting similar values of approximately 40%. The microparticles were characterized by scanning electron microscopy (SEM), which showed that the average sizes of the PHB and PHBV microparticles were 5.92±0.74 μm and 5.63±0.68 μm, respectively. The ametryn release profile was modified when it was encapsulated in the microparticles, with slower and more sustained release compared to the release profile of pure ametryn. When ametryn was associated with the PHB and PHBV microparticles, the amount of herbicide released in the same period of time was significantly reduced, declining to 75% and 87%, respectively. For both types of microparticle (PHB and PHBV) the release of ametryn was by diffusion processes due to anomalous transport (governed by diffusion and relaxation of the polymer chains), which did not follow Fick's laws of diffusion. The results presented in this paper are promising, in view of the successful encapsulation of ametryn in PHB or PHBV polymer microparticles, and indications that this system may help reduce the impacts caused by the herbicide, making it an environmentally safer alternative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号