首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The failure modes of Reinforced Concrete (RC) beams strengthened in shear with Fiber Reinforced Polymer (FRP) sheets or strips are not well understood as much as those of RC beams reinforced with steel stirrups. When the beams are strengthened in shear with FRP composites, beams may fail due to crushing of the concrete before the FRP reaches its rupture strain. Therefore, the effective strain of the FRP plays an important role in predicting the shear strength of such beams. This paper presents the results of an analytical and experimental study on the performance of reinforced concrete beams strengthened in shear with FRP composites and internally reinforced with conventional steel stirrups. Ten RC beams strengthened with varying FRP reinforcement ratio, the type of fiber material (carbon or glass) and configuration (continuous sheets or strips) were tested. Comparisons between the observed and calculated effective strains of the FRP in the tested beams failing in shear showed reasonable agreement.  相似文献   

2.
A computational framework previously presented for nonlinear analysis of RC elements, has been developed for FRP strengthened RC elements in this study. With the aim of the developed model nonlinear behavior of strengthened RC elements can be simulated based on local stresses state at the crack surface considering all stress transfer mechanisms. Moreover, the local response of each component and its effect on the global behavior of the element can be obtained which is useful for proposing rational design relations. The versatility of the proposed method is verified by comparing the analytical and experimental results. Based on the analytical results, a simple relation is proposed for shear design and assessment of FRP strengthened RC elements and members. The accuracy of the proposed design relation is verified against available experimental results on FRP strengthened RC beams.  相似文献   

3.
This paper presents an experimental and analytical research study aimed at understanding and modeling of debonding failures in fiber reinforced polymer (FRP) strengthened reinforced concrete (RC) beams. The experimental program investigated debonding failure modes and mechanisms in beams strengthened in shear and/or flexure and tested under monotonic loading. A newly developed fracture mechanics based model considers the global energy balance of the system and predicts the FRP debonding failure load by characterizing the dominant mechanisms of energy dissipation during debonding. Validation of the model is performed using experimental data from several independent research studies and a design procedure is outlined.  相似文献   

4.
李忠献  张媛  景萌 《工程力学》2006,23(Z1):122-127
采用有限元方法对碳纤维布加固钢筋混凝土构件进行非线性分析,是对有限的试验研究的有效补充和进一步深入探讨。根据4根碳纤维布加固钢筋混凝土箱梁的试验研究结果,建立了合理的三维有限元模型,对碳纤维布加固钢筋混凝土箱梁在弯剪扭复合受力下的抗扭性能进行了非线性有限元分析。计算得到的扭矩-扭转角关系曲线、钢筋和碳纤维布的应变曲线以及界面粘接单元的恢复力曲线等与试验结果吻合较好,可以较好地模拟碳纤维布加固箱梁的受扭性能。进一步通过对7根数值梁的计算结果分析,提出碳纤维布加固钢筋混凝土箱梁在复合受力下的剪扭相关性符合直线方程。  相似文献   

5.
The shear resisting mechanisms of reinforced concrete (RC) beams with longitudinal and transverse FRP reinforcement can be affected by the mechanical properties of the FRP rebars. This paper presents a mechanical model for the prediction of the shear strength of FRP RC beams that takes into account its particularities. The model assumes that the shear force is taken by the un-cracked concrete chord, by the residual tensile stresses along the crack length and by the FRP stirrups. Failure is considered to occur when the principal tensile stress at the concrete chord reaches the concrete tensile strength, assuming that the contribution of the FRP stirrups is limited by a possible brittle failure in the bent zone. The accuracy of the proposed method has been verified by comparing the model predictions with the results of 112 tests. The application of the model provides better statistical results (mean value Vtest/Vpred equal to 1.08 and COV of 19.5%) than those obtained using the design equations of other current models or guidelines. Due to the simplicity, accuracy and mechanical derivation of the model it results suitable for design and verification in engineering practice.  相似文献   

6.
Methods for predicting the shear capacity of FRP shear strengthened RC beams assume the traditional approach of superimposing the contribution of the FRP reinforcing to the contributions from the reinforcing steel and the concrete. These methods become the basis for most guides for the design of externally bonded FRP systems for strengthening concrete structures. The variations among them come from the way they account for the effect of basic shear design parameters on shear capacity. This paper presents a simple method for defining improved equations to calculate the shear capacity of reinforced concrete beams externally shear strengthened with FRP. For the first time, the equations are obtained in a multiobjective optimization framework solved by using genetic algorithms, resulting from considering simultaneously the experimental results of beams with and without FRP external reinforcement. The performance of the new proposed equations is compared to the predictions with some of the current shear design guidelines for strengthening concrete structures using FRPs. The proposed procedure is also reformulated as a constrained optimization problem to provide more conservative shear predictions.  相似文献   

7.
Bond stress – slip characteristics play a major role in the behaviour of EBR FRP strengthened RC beams. These characteristics are normally determined by using experimental data from small-scale bond tests. However, the research community is yet to agree on a unified experimental set-up and testing procedure for these tests. The lack of standard tests leads to high variability in published results and hinders the development of reliable design models. The testing programme presented herein was part of an international Round Robin Test (iRRT) exercise, aimed at assessing the suitability of double shear tests to characterise the bond behaviour of FRP strengthening systems. A total of 20 tests were performed on different FRP plates. Recommendations on how to improve the iRRT methodology are given. Based on the results, an improved capacity model that accounts for concrete surface preparation is proposed and validated against an extensive database of published results. The outcome of the current research is expected to provide engineers with more confidence in designing safely strengthening applications whilst making the best use of the FRP materials.  相似文献   

8.
《Composites Part B》2013,45(1):604-612
This paper presents experimental research on reinforced concrete (RC) beams with external flexural and flexural–shear strengthening by fibre reinforced polymer (FRP) sheets consisting of carbon FRP (CFRP) and glass FRP (GFRP). The work carried out has examined both the flexural and flexural–shear strengthening capacities of retrofitted RC beams and has indicated how different strengthening arrangements of CFRP and GFRP sheets affect behaviour of the RC beams strengthened. Research output shows that the flexural–shear strengthening arrangement is much more effective than the flexural one in enhancing the stiffness, the ultimate strength and hardening behaviour of the RC beam. In addition theoretical calculations are developed to estimate the bending and shear capacities of the beams tested, which are compared with the corresponding experimental results.  相似文献   

9.
In the last two decades, the use of advanced composite materials such as Fiber Reinforced Polymers (FRP) in strengthening reinforced concrete (RC) structural elements has been increasing. Research and design guidelines concluded that externally bonded FRP could increase the capacity of RC elements efficiently. However, the linear stress–strain characteristics of FRP up to failure and lack of yield plateau have a negative impact on the overall ductility of the strengthened RC elements. Use of hybrid FRP laminates, which consist of a combination of either carbon and glass fibers, or glass and aramid fibers, changes the behaviour of the material to a non-linear behaviour. This paper aims to study the performance of reinforced concrete beams strengthened by hybrid FRP laminates.

This paper presents an experimental program conducted to study the behaviour of RC beams strengthened with hybrid fiber reinforced polymer (HFRP) laminates. The program consists of a total of twelve T-beams with overall dimensions equal to 460 × 300 × 3250 mm. The beams were tested under cyclic loading up to failure to examine its flexural behaviour. Different reinforcement ratios, fiber directions, locations and combinations of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) laminates were attached to the beams to determine the best strengthening scheme. Different percentages of steel reinforcement were also used. An analytical model based on the stress–strain characteristics of concrete, steel and FRP was adopted. Recommendations and design guidelines of RC beams strengthened by FRP and HFRP laminates are introduced.  相似文献   


10.
U型FRP加固钢筋混凝土梁受剪剥离性能的有限元分析   总被引:8,自引:0,他引:8  
采用FRP布对梁进行抗剪加固,可以有效的解决梁因配箍率不足而导致的受剪承载力偏低的问题。根据文献[1]中7根试验梁的参数,针对工程中常用的U型FRP受剪加固形式,建立三维有限元分析模型,采用商业有限元计算软件ANSYS,数值模拟了加载全过程和受剪剥离受力性能,根据试验结果确定了FRP-混凝土界面粘结剥离强度,并建议了合适的裂面剪力传递系数。根据有限元分析结果,作者又进一步研究了U型FRP布的应变分布、分担剪力的贡献、剥离破坏的过程,以及加固量、FRP类型和粘贴面积率对加固梁受剪承载力的影响。在有限元分析的基础上结合试验结果,建议了U型粘贴加固的受剪剥离承载力计算方法。  相似文献   

11.
The use of externally bonded carbon fiber-reinforced polymer (EB-CFRP) to strengthen deficient reinforced concrete (RC) beams has gained in popularity and has become a viable and cost-effective method. Fatigue behavior of RC beams strengthened with FRP is a complex issue due to the multiple variables that affect it (applied load range, frequency, number of cycles). Very few research studies have been conducted in shear under cyclic loading. The use of prefabricated CFRP L-shaped laminates (plates) for strengthening RC beams under static loading has proven to be technically feasible and very efficient. This study aimed to examine the fatigue performance of RC T-beams strengthened in shear for increased service load using prefabricated CFRP L-shaped laminates. The investigation involved six laboratory tests performed on full-size 4520 mm-long T-beams. The specimens were subjected to fatigue loading up to six million load cycles at a rate of 3 Hz. Two categories of specimens (unstrengthened and strengthened) and three different transverse-steel reinforcement ratios (Series S0, S1, and S3) were considered. Test results were compared with the upper fatigue limits specified by codes and standards. The specimens that did not fail in fatigue were then subjected to static loading up to failure. The test results confirmed the feasibility of using CFRP L-shaped laminates to extend the service life of RC T-beams subjected to fatigue loading. The overall response was characterized by an accelerated rate of damage accumulation during the early cycles, followed by a stable phase in which the rate slowed significantly. In addition, the strains in the stirrups decreased after the specimens were strengthened with CFRP, despite the higher applied fatigue loading. Moreover, the addition of L-shaped laminates enhanced the shear capacity of the specimens and changed the failure mode from brittle to ductile under static loading. Finally, the presence of transverse steel in strengthened beams resulted in a substantially reduced gain in shear resistance due to CFRP, confirming the existence of an interaction between the transverse steel and the CFRP.  相似文献   

12.
Strengthening of reinforced concrete (RC) members by means of fibre reinforced polymers (FRP) has gained increasing importance in the last few decades. On the other hand the necessity of skilled labour, high costs and particularly the weak response under high temperature conditions represent critical issues for the effective application of this technique. The use of fibre reinforced cementitious matrix (FRCM) composites applied to RC members seems to be a promising technique since it combines cost economy and high performance. Despite the fact that a number of experimental investigations on strengthening of RC elements by means of fibre reinforced polymers (FRP) composites are available in the literature, very little information is available about fibre reinforced cementitious matrix composite (FRCM). Hence, the use of cementitious composites in strengthening of RC structures is strongly limited by the lack of design models, guidelines, and recommendations and by the few available experimental investigations.This work aims to better understand the behaviour of FRCM strengthened RC full-scale elements through experimental tests on precast prestressed double-T beams. In addition to investigating the experimental behaviour of an innovative and promising strengthening system, a further element of novelty of the work is that the tested beams belong to an actual existing industrial building, since the few experimental tests available in the literature are mostly related to small-scale and cast-in-place RC elements.  相似文献   

13.
The paper presents a theoretical prediction of the structural behavior of reinforced concrete (RC) beams externally strengthened to flexure by using a unidirectional ultra-high tensile strength steel (UHTSS) reinforcing mesh embedded in an inorganic matrix (Steel Reinforced Grout, SRG) or in an organic matrix (Steel Reinforced Polymer, SRP).For these innovative composite materials are not yet available in literature specific standard documents, guidelines or analytical models capable to predict the structural behavior of the strengthened elements. Therefore, in order to evaluate the flexural strength of the strengthened beams some analytical models to predict the maximum axial strain developed in Fiber Reinforced Polymer (FRP) systems at the onset of intermediate debonding failure, have been used.The goal is to assess the effectiveness of current analytical models used, up to day, to FRP strengthening systems to the SRG and SRP strengthening systems. For this aim, a database of experimental results on RC beams strengthened in bending by bonded SRG and SRP systems has been collected.The comparisons between the theoretical predictions and the experimental data, in terms of debonding strain values, load carrying capacity, load-midspan deflection curves, have highlighted the reliability and adaptability of the current analytical models.Finally, in order to evaluate the effectiveness of the SRG and SRP systems for strengthening RC beams a parametric study was also carried out.  相似文献   

14.
CFRP加固混凝土梁各受力阶段的剥离机理   总被引:4,自引:0,他引:4  
粘贴碳纤维片加固混凝土梁的试验数据和破坏模式表明,在锚固措施可靠的情况下,界面粘贴失效或基面混凝土剥离是加固混凝土梁的主要早期破坏形态。为研究混凝土梁不同受力阶段对界面粘结失效或混凝土剥离的影响程度,针对实际加固工程中常见的混凝土梁损伤状况并结合室内试验结果,分别研究了粘贴碳纤维片加固完整梁及不同开裂程度梁在不同受力阶段中的界面应力分布与剥离机理,指出了加固梁的开裂或裂缝扩展是导致界面或粘贴基面混凝土剥离的主要原因。最后,结合实际混凝土梁的损伤特点,提出了加固设计施工过程中的注意事项及应采取的技术措施。  相似文献   

15.
预应力FRP加固混凝土结构技术研究与应用   总被引:1,自引:0,他引:1  
介绍了笔者进行的预应力芳纶纤维布和碳纤维筋加固混凝土结构的一些主要研究成果,内容包括:预应力芳纶纤维布永久锚具的开发;预应力芳纶纤维布的应力松弛损失研究;预应力芳纶纤维布加固混凝土梁的受弯、受剪性能研究;温度对芳纶纤维布配套粘结材料的力学性能影响研究;体外预应力碳纤维筋局部加固混凝土梁的力学性能研究;碳纤维筋预应力粗纤维混凝土梁的抗震性能研究;预应力纤维布加固混凝土结构的工程应用等。  相似文献   

16.
Fibre reinforced polymer (FRP) bars represent an interesting alternative to conventional steel as internal reinforcement of reinforced concrete (RC) members where some properties such as durability, magnetic transparency, insulation, are of primary concern. The present paper focuses on the assessment of Eurocode-like design equations for the evaluation of the shear strength of FRP RC members, as proposed by the guidelines of the Italian Research Council CNR-DT 203 [CNR-DT 203/2006. Guide for the design and construction of concrete structures reinforced with fiber-reinforced polymer bars. National Research Council, Rome, Italy; 2006]. Both the concrete and the FRP stirrups contributions to shear are taken into account: the new equations derived with reference to Eurocode equations for shear of steel RC members are verified through comparison with the equations given by ACI, CSA and JSCE guidelines, considering a large database of members with and without shear reinforcement failed in shear.  相似文献   

17.
Amongst various methods developed for strengthening and rehabilitation of reinforced concrete (RC) beams, external bonding of fibre reinforced plastic (FRP) strips to the beam has been widely accepted as an effective and convenient method. The experimental research on FRP strengthened RC beams has shown five most common modes, including (i) rupture of FRP strips; (ii) compression failure after yielding of steel; (iii) compression failure before yielding of steel; (iv) delamination of FRP strips due to crack; and (v) concrete cover separation. In this paper, a failure diagram is established to show the relationship and the transfer tendency among different failure modes for RC beams strengthened with FRP strips, and how failure modes change with FRP thickness and the distance from the end of FRP strips to the support. The idea behind the failure diagram is that the failure mode associated with the lowest strain in FRP or concrete by comparison is mostly likely to occur. The predictions based on the present failure diagram are compared to 33 experimental data from the literature and good agreement on failure mode and ultimate load has been obtained. Some discussion and recommendation for practical design are given.  相似文献   

18.
进行了6根碳纤维布加固已承受荷载的钢筋混凝土梁和2根对比混凝土梁的抗弯性能试验研究,分析了碳纤维布加固已承受荷载的钢筋混凝土梁的破坏机理,研究了荷载历史对加固梁极限荷载的影响。试验结果表明,粘贴碳纤维布可以有效地提高加固梁的抗弯承载能力。无论荷载历史如何,只要梁承受的初始荷载相同,梁破坏时的极限荷载基本相同。梁端锚固对加固梁的极限荷载影响不明显。根据不同的破坏模式,提出了碳纤维布加固已承受荷载的钢筋混凝土梁的承载力计算方法,给出了工程实用计算公式。  相似文献   

19.
复杂应力状态对混凝土梁外贴FRP条带抗剪贡献的影响   总被引:1,自引:0,他引:1  
FRP剥离是外贴FRP抗剪加固混凝土梁主要的破坏模式之一。以往研究中往往简单的将面内剪切试验得到的FRP-混凝土界面粘结滑移关系应用于外贴FRP抗剪加固梁的剥离承载力计算。外贴FRP抗剪加固梁中FRP下的混凝土的应力状态与面内剪切试验情况有较大差别,这对FRP-混凝土界面的力学性能具有较大的影响。因此,以往的方法高估了FRP条带的抗剪贡献。该文研究了混凝土多轴应力状态对FRP-混凝土界面性能的影响,并根据试验研究结果,提出了U形FRP加固混凝土梁中FRP剥离应变的折减系数。与试验结果的对比计算分析表明:使用该折减系数修正后的设计公式更加合理。  相似文献   

20.
Over the last decade, an extreme increase in the application of fiber reinforced polymers (FRPs) for strengthening of reinforced concrete (RC) structures has been observed. The most common technique for strengthening of RC members utilizing FRP reinforcements is externally bonded reinforcement (EBR) technique. Despite certain benefits of the technique such as simple and rapid installation, the main problem which has greatly hampered the use of EBR method is premature debonding of FRP composite from concrete substrate. Recently, grooving method (GM) has been introduced as an alternative to conventional EBR technique. Grooving with the special technique of externally bonded reinforcement on grooves (EBROG) has yielded promising results in postponing or, in some cases, completely elimination of undesirable debonding failure in flexural/shear strengthened RC beams. Consequently, the main intention of the current study is to make a comparison between FRP-to-concrete bond behavior of EBR and EBROG techniques by means of single-shear bond tests. To do so, CFRP sheets were adhered to 16 concrete prism specimens using EBR and EBROG techniques. The specimens were then subjected to single-shear bond test and the results were compared. A non-contact, full field deformation measurement technique, i.e. particle image velocimetry (PIV) was utilized to investigate the bond behavior of the strengthened specimens. Successive digital images were taken from each specimen undergoing deformation during the test process. Images were then analyzed utilizing PIV method and load–slip behavior as well as slip and strain profiles along the strengthening CFRP strips were reported. Experimental results of the current study strongly verify the capability of GM for strengthening RC members to completely eliminate the debonding failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号