首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous work has shown that coherent multiple bit observation of binary continuous phase chirp (CPC) signals gives improved error rate performance compared to the conventional bit-by-bit detection scheme. This paper determines bounds on the error rate improvement made possible by multiple bit observation for optimum and suboptimum [average matched filter (AMF)] noncoherent detection of binary CPC signals in additive white Gaussian noise (AWGN). For the same observation interval, it is shown that noncoherent CPC receivers provide higher signal-to-noise (SNR) gain than coherent receivers compared to the respective optimum single bit schemes. In particular, the three-bit noncoherent AMF receiver is shown to yield 3 dB SNR gain over a wide range of signal parameters.  相似文献   

2.
The degradation in bit error rate due to the presence of multiple-access interference in a white Gaussian channel can be measured by the multiuser asymptotic efficiency, defined as the ratio between the SNR required to achieve the same uncoded bit error rate in the absence of interfering users and the actual SNR. In this paper, the asymptotic efficiency of the optimum multiuser demodulator (a bank of matched filters followed by a Viterbi algorithm) is investigated and compared to that of the conventional single-user matched filter receiver. The computation of the optimum asymptotic efficiency of any given user is equivalent to the minimization of the Euclidean distance between any pair of multiuser signals which differ in at least one of the symbols of that user. It is shown that the optimum multiuser efficiency of asynchronous systems is nonzero with probability 1, and therefore the optimum demodulator does not become multiple-access limited in contrast to the single-user receiver. A class of signal constellations with moderate cross-correlation requirements is shown to achieve unit optimum multiuser efficiencies and, hence, to be equivalent to orthogonal signal sets from the viewpoint of performance of the optimum multiuser detector.  相似文献   

3.
In this paper, we present a new partially coherent receiver architecture motivated by optimum detection of quadrature amplitude modulation (QAM) signals in the presence of time-varying Tikhonov-distributed residual phase estimation error due to phase-locked loop (PLL)-aided phase tracking scheme. Performance is established in terms of bit error rate (BER). In this paper, an approximate performance measure motivated by union bound is presented for the proposed receiver architecture for 8- and 16-QAM constellations. The performance measures are assessed via simulation and analytical means for additive white Gaussian noise (AWGN) as well as for Rayleigh and Rician fading channels. The performance measures are shown to follow those of the optimum receiver over a wide range of signal-to-noise ratio (SNR), while outperforming a standard coherent receiver operating in the presence of residual phase error by as much as 2 dB.  相似文献   

4.
The bit error rate (BER) performance and the characteristics of a two-dimensional (2-D) RAKE receiver operating in a correlated frequency-selective Nakagami-fading environment are analyzed. Correlated fading between array elements whose fading statistics are identical across the same RAKE branch, as well as an arbitrary number of RAKE-branches with arbitrary finding statistics, are assumed. We derived an approximated signal-to-noise ratio (SNR) statistics for one RAKE branch with correlated multiple antennas, which is extended to that for multiple RAKE branches with arbitrary fading statistics, i.e., a 2-D RAKE receiver. The receiver's performance and characteristics are analyzed using the cumulative distribution function of the SNR at the 2-D RAKE receiver output and the BER under various conditions, Numerical results show that the improvement In performance of the 2-D RAKE receiver is brought about by the average SNR and diversity gains, which are identified by two parameters specifying the gamma distribution of SNR  相似文献   

5.
In this paper, the optimum decision boundaries for (N, M) differential amplitude phase-shift keying on the Rayleigh-fading channel are analyzed. A postdetection maximal ratio combining (MRC) and weighted maximal ratio combining (WMRC) diversity receivers are proposed. In the Rayleigh-fading channel, assuming a high signal-to-noise ratio and a small normalized Doppler frequency, the analytical optimum decision boundaries are obtained. In addition, it is shown that an outer optimum decision boundary is the inverse of the inner optimum decision boundary. In the proposed MRC receiver, the decision at each branch is made based on the minimum distance criterion. The performance of the MRC receiver is analyzed, in terms of the union bound for bit error probability. The proposed WMRC receiver assigns weighting factors to the decision variable at each branch, based on the optimum decision boundaries. The performance of the WMRC is investigated through computer simulation and compared with those of MRC and equal gain combining (EGC). From the results, the performances of MRC and WMRC are found to be better than those of the EGC receiver on both the Rayleigh- and Rician-fading channels. It is also found that the performance improvement of WMRC over MRC is more pronounced as the number of diversity branches increases  相似文献   

6.
Previous indoor mobile optical wireless systems operated typically at 30 Mbit/s to 100 Mbit/s and here we report on systems that operate at 2.5 Gbit/s and 5 Gbit/s. We are able to achieve these improvements through the introduction of three new approaches: transmit beam power adaptation, a two dimensional beam clustering method (2DBCM), and diversity imaging. Through channel and noise modeling we evaluated the performance of our systems. The performance of a novel optical wireless (OW) configuration that employs a two dimensional adaptive beam clustering method (2DABCM) in conjunction with imaging diversity receivers is evaluated under multipath dispersion and background noise (BN) impairments. The new proposed system (2DABCM transmitter with imaging diversity receiver) can help reduce the effect of intersymbol interference and improve the signal-to-noise ratio (SNR) even at high bit rate. At a bit rate of 30 Mbit/s, previous work has shown that imaging conventional diffuse systems (CDS) with maximal ratio combining (MRC) offer 22 dB better SNR than the non-imaging CDS. Our results indicate that the 2DABCM system with an imaging diversity receiver provides an SNR improvement of 45 dB over the imaging CDS with MRC when both operate at 30 Mbit/s. In the CDS system, an increase in bandwidth from 38 MHz (non-imaging CDS) to 200 MHz approximately, is achieved when an imaging receiver is implemented. Furthermore, the three new methods introduced increase the bandwidth from 38 MHz to 5.56 GHz. At the least successful receiver locations, our 2.5 Gbit/s and 5 Gbit/s imaging 2DABCM systems with MRC offer significant SNR improvements, almost 26 dB and 19 dB respectively over the non-imaging CDS that operates at 30 Mbit/s.  相似文献   

7.
CDMA mobile radio systems suffer from intersymbol interference (ISI) and multiple access interference (MAI) which can be combated by using joint detection (JD) techniques. Furthermore, the time variation of the radio channels leads to degradations of the receiver performance due to fading. These degradations can be reduced by applying diversity techniques. Three suboptimum detection techniques based on matched filters (MF), zero forcing (ZF) and minimum mean square-error (MMSE) equalization are considered. For further improvements, switched and equal gain diversity techniques are employed to combat fading. The performance is depicted in terms of the average bit error probability versus the average SNR per bit in a single cell environment showing an appreciable improvement over the non diversity situation. Theoretical results for the SNR at the front end of the receiver and the BER for ideal channel are obtained and compared with the simulation results.  相似文献   

8.
ML estimation of carrier phase for coherently orthogonal continuous-phase frequency-shift-keying (COCPFSK) signals is considered. Although the estimator, in general is nonimplementable, its high and low signal-to-noise-ratio approximations both lead to linear readily implementable receiver structures. The high SNR approximation yields a DA receiver, whereas the low SNR approximation yields an NDA receiver. The performance of both receivers in term of bit error probability is analyzed. The existence of an unmodulated component in the sufficient statistical representation of a COCPFSK signal is pointed out, and it is shown how this component enters directly into maximum-like carrier recovery. This leads to interpretation of the NDA receiver as a generalization of the conventional matched-filter envelope-detector receiver. The insights gained here are useful to the problem of ML carrier recovery for Viterbi decoding of continuous phase modulation signals  相似文献   

9.
This work presents the results of a theoretical study of the meteor-burst channel which illustrates its time-varying bursty nature. In addition, the authors describe an innovative approach to data transmission over meteor-burst systems, i.e. the use of the feedback adaptive variable rate (FAVR) system which allows the maximum amount of information to be transmitted over each meteor-burst channel. For underdense meteor channels the FAVR performance is compared to an optimum system, i.e. a system capable of changing its bit rate instantaneously to channel conditions so as to maintain a constant SNR in each bit, and to a constant optimum rate/burst system. It is shown that when compared to an optimum rate per burst system, FAVR can result in a throughput increase exceeding a factor of 10. It is also shown that FAVR can approach the optimum system performance, although for practical purposes, it appears that 83-88% of optimum is attainable  相似文献   

10.
A covariance shaping framework for linear multiuser detection   总被引:1,自引:0,他引:1  
A new class of linear multiuser receivers, referred to as the covariance shaping multiuser (CSMU) receiver, is proposed, for suppression of interference in multiuser wireless communication systems. This class of receivers is based on the recently proposed covariance shaping least-squares estimator, and is designed to minimize the total variance of the weighted error between the receiver output and the observed signal, subject to the constraint that the covariance of the noise component in the receiver output is proportional to a given covariance matrix, so that we control the dynamic range and spectral shape of the output noise. Some of the well-known linear multiuser receivers are shown to be special cases of the CSMU receiver. This allows us to interpret these receivers as the receivers that minimize the total error variance in the observations, among all linear receivers with the same output noise covariance, and to analyze their performance in a unified way. We derive exact and approximate expressions for the probability of bit error, as well as the asymptotic signal-to-interference+noise ratio in the large system limit. We also characterize the spectral efficiency versus energy-per-information bit of the CSMU receiver in the wideband regime. Finally, we consider a special case of the CSMU receiver, equivalent to a mismatched minimum mean-squared error (MMSE) receiver, in which the channel signal-to-noise ratio (SNR) is not known precisely. Using our general performance analysis results, we characterize the performance of the mismatched MMSE receiver. We then treat the case in which the SNR is known to lie in a given uncertainty range, and develop a robust mismatched MMSE receiver whose performance is very close to that of the MMSE receiver over the entire uncertainty range.  相似文献   

11.
Building on the developments in the performance analysis of generalized selection combining (GSC), this paper examines the optimum spreading bandwidth for a fixed-complexity GSC diversity receiver operating over independent identically distributed Rayleigh paths. For this purpose, the study considers three performance criteria: (1) average combined signal-to-noise ratio (SNR) at the GSC output; (2) average bit error probability (BEP); and (3) outage probability of the instantaneous combined SNR at the GSC output. For the average BEP criterion, results are presented for both coherent and noncoherent combining. For the average combined SNR and some instances of the average BEP optimization problem, an accurate approximate estimate of this optimum bandwidth in the form of a solution of a transcendental equation is provided. In other cases, where the optimization is not easily tractable in an analytic fashion, a numeric-search procedure is used to find this optimum bandwidth for different performance criteria and system parameters of interest. Finally, simplified rule-of-thumb-type formulas are also presented as a good reference for picking the optimum spreading bandwidth given a set of system parameters and a particular performance criterion of interest  相似文献   

12.
采用Philip公司TDA8044数字解调芯片设计并实现了一种高速基带全数字接收机。它的最高合路数据可以达到90Mbpa,与传统的模拟接收机相比,不仅具有体积小和性能稳定等优点,而且在相同信噪比下,误码性能有很大的改善。实验室测试数据表明,在对QPSK调制信号进行无纠错编译码解词时,在10^-7量级,其误码性能优于模拟接收机0.8dB,而且随着信噪比增加,改善更加明显。  相似文献   

13.
Transmitted reference (TR) schemes for ultra wideband (UWB) eliminate the need for channel estimation, reducing receiver complexity at the cost of reduced performance. This letter proposes a transmitted reference (TR) scheme with multiple autocorrelation sampling detection. The proposed receiver captures the energy in the received signal's autocorrelation side lobes, outperforming the traditional TR scheme for the operational range of signal to noise ratio (SNR) values. Time hoping, as well as the use of bandwidth efficient signaling with favorable spectral characteristics, facilitate significant improvement in system capacity in comparison to a similar scheme using orthogonal chirp signals in multipath spread channels.  相似文献   

14.
Direct detection optical code-division multiple-access (CDMA) communication systems involving overlapping pulse-position modulation (OPPM) is considered. Double optical hardlimiters placed before and after the correlator at the receiver side is proposed for this system. The performance (in terms of the bit error probability) of this system is evaluated taking into account the effect of both the multiple-user interference and the photodetector shot noise. Both the receiver dark current and thermal noise are ignored in our analysis since their effect is very minor. The performance of the above receiver is compared to that of the OPPM-CDMA correlator receiver without hardlimiters, OPPM-CDMA optimum receiver, and OOK-CDMA optimum receiver. Our results reveal that, for given pulsewidth and throughput constraints, significant improvement in the performance is acquired when adding double optical hardlimiters to the correlator of the OPPM-CDMA receiver. Moreover the performance of this system is asymptotically close to the optimum OPPM-CDMA system and is considerably superior to the optimum OOK-CDMA system. It is also reported that the capacity of the proposed system is about 5.3 times greater than that of the optimum OOK-CDMA system  相似文献   

15.
Chip-level detection in optical code division multiple access   总被引:2,自引:0,他引:2  
A new detector for optical code-division multiple-access (CDMA) communication systems is proposed. This detector is called the chip-level receiver. Both ON-OFF keying (OOK) and pulse-position modulation (PPM) schemes, that utilize this receiver, are investigated in this paper. For OOK, an exact bit error rate is evaluated taking into account the effect of both multiple-user interference and receiver shot noise. An upper bound on the bit error probability for pulse-position modulation (PPM)-CDMA system is derived under the above considerations. The effect of both dark current and thermal noises is neglected in our analysis. Performance comparisons between chip-level, correlation, and optimum receivers are also presented. Both correlation receivers with and without an optical hardlimiter are considered. Our results demonstrate that significant improvement in the performance is gained when using the chip-level receiver in place of the correlation one. Moreover the performance of the chip-level receiver is asymptotically close to the optimum one. Nevertheless, the complexity of this receiver is independent of the number of users, and therefore, much more practical than the optimum receiver  相似文献   

16.
1 Introduction Multiband orthogonal frequency division multiplexing (MB- OFDM) ultra wideband (UWB) is a novel multicarrier UWB system that has been proposed as a physical layer for reliable high bit rate and short-range communication network. It uses OFD…  相似文献   

17.
The effect of phase noise on the performance of differential phase shift keying (DPSK) is analyzed for four different receiver structures. The phase noise model used is more general than the standard Brownian motion model. It allows the observation of the effect of frequency feedback stabilization on system performance. The asymptotic performance in the limit as the signal-to-noise ratio tends to infinity is considered. The results show that feedback stabilization results in a considerable performance improvement. For example, in a narrowband receiver this scheme results in an effective linewidth reduction by a factor of 12.5 when the feedback bandwidth is 0.8 times the bit rate, and by a factor of 42 when the feedback bandwidth is 1.6 times the bit rate. Therefore, frequency feedback reduces the minimum required data rate for a given laser linewidth, or increases the maximum linewidth allowed for a given data rate. The performance of the narrowband receiver in the presence of both additive and phase noises is determined and a dramatic improvement with feedback is shown  相似文献   

18.
An approximate analysis is presented which can be used to predict the performance of power and signal-to-noise ratio (SNR) equalization schemes when applied to dense wavelength-division multiplexing (DWDM) lightwave systems employing erbium-doped fiber amplifier (EDFA) cascades. Expressions are provided which relate the maximum number of amplifiers, EDFA gain imbalance, bit rate (R/sub b/), transmitter power, receiver dynamic range and number of channels. The relative advantages of these two equalization strategies are quantified by comparing the maximum number of amplifiers allowed by each scheme. It is shown that, while SNR equalization represents, on balance, the more desirable equalization strategy for future EDFA-based DWDM lightwave transmission systems, under certain conditions power equalization may be a better choice. When employing an APD receiver, for instance, power equalization can support 1.9 times more amplifiers than SNR equalization. However, when employing the more conventional preamplified PIN/FET receiver, SNR equalization can support 1.7 times more amplifiers than power equalization.  相似文献   

19.
This paper investigates the noncoherent block detection of orthogonal N frequency-shift keying (FSK)-L differential phase shift keying (DPSK) signals transmitted over the additive white Gaussian noise channel, based on the principle of maximum-likelihood (ML) sequence estimation. By virtue of a union bound argument, asymptotic upper bounds for the bit error probability of the developed ML block receiver are derived and verified by simulation. It is analytically shown that the noncoherent NFSK-LDPSK ML block receiver performs comparably with the ideal coherent NFSK-L phase shift keying (PSK) receiver for L = 2 and 4, as the observation block length is large enough. Furthermore, substantial performance improvement can be achieved by the ML block detection of the NFSK-LDPSK signal with L > 2 by increasing the observation block length  相似文献   

20.
We derive the optimum structure of a maximum-likelihood (ML) receiver for a fast frequency-hopped binary frequency-shift-keying (FFH/BFSK) spread-spectrum (SS) communication system operating in the presence of multitone jamming (MTJ) and additive white Gaussian noise (AWGN). It is shown that the side information of noise variance, signal tone amplitude, and multiple interfering tone amplitude at each hop, as well as the computation of nonlinear modified Bessel function are required to implement the optimum ML receiver. We have also derived and analyzed two suboptimum receivers-namely, the ML-I and ML-II receivers-for large and small signal-to-noise ratio (SNR), respectively. Performance comparisons among various receivers show that the ML receiver gives the best performance, while the ML-I and ML-II receivers also outperform the other existing methods under both high and low SNR conditions  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号